# install.packages("dplyr")
# install.packages("ggplot2")
# install.packages("SingleCellExperiment") #failed
# install.packages("scater") #failed
# install.packages("scran") #failed
# install.packages("UpSetR")
# install.packages("googlesheets4")
# install.packages("cowplot")
# install.packages("BiocParallel") #failed
# install.packages("scDblFinder") #failed
# install.packages("tibble")
# install.packages("ggpubr") #failed
# install.packages("reshape2")
# install.packages("pheatmap")
# install.packages("RColorBrewer")
# install.packages("batchelor") #failed
# install.packages('BiocManager')
# BiocManager::install("SingleCellExperiment")
#BiocManager::install("scater")
# BiocManager::install("scran")
# BiocManager::install("BiocParallel")
# BiocManager::install("scDblFinder")
# BiocManager::install("ggpubr")
# BiocManager::install("batchelor")
# BiocManager::install("DropletUtils")
# install.packages("knitr")
require("knitr")
knitr::opts_chunk$set(fig.width=10, fig.height=12)
Caricamento del pacchetto richiesto: knitr
suppressPackageStartupMessages({
    library(dplyr)
    library(ggplot2)
    library(SingleCellExperiment)
    library(scater)
    library(scran)
    library(UpSetR)
    library(googlesheets4)
    library(cowplot)
    library(BiocParallel)
    library(scDblFinder)
    library(tibble)
    library(ggpubr)
    library(reshape2)
    library(pheatmap)
    library(RColorBrewer)
    library(batchelor)
    library(DropletUtils)
})
Warning message:
“il pacchetto ‘UpSetR’ è stato creato con R versione 4.3.0”
Warning message:
“il pacchetto ‘googlesheets4’ è stato creato con R versione 4.3.0”
Warning message:
“il pacchetto ‘batchelor’ è stato creato con R versione 4.3.0”
Warning message:
“il pacchetto ‘DropletUtils’ è stato creato con R versione 4.3.0”
Warning message:
“sostituzione dell'importazione precedente ‘S4Arrays::.__C__DummyArrayViewport’ con ‘DelayedArray::.__C__DummyArrayViewport’ durante il caricamento di ‘HDF5Array’”
Warning message:
“sostituzione dell'importazione precedente ‘S4Arrays::DummyArrayGrid’ con ‘DelayedArray::DummyArrayGrid’ durante il caricamento di ‘HDF5Array’”
Warning message:
“sostituzione dell'importazione precedente ‘S4Arrays::DummyArrayViewport’ con ‘DelayedArray::DummyArrayViewport’ durante il caricamento di ‘HDF5Array’”
Warning message:
“sostituzione dell'importazione precedente ‘S4Arrays::write_block’ con ‘DelayedArray::write_block’ durante il caricamento di ‘HDF5Array’”
Warning message:
“sostituzione dell'importazione precedente ‘S4Arrays::maxlength’ con ‘DelayedArray::maxlength’ durante il caricamento di ‘HDF5Array’”
Warning message:
“sostituzione dell'importazione precedente ‘S4Arrays::arbind’ con ‘DelayedArray::arbind’ durante il caricamento di ‘HDF5Array’”
Warning message:
“sostituzione dell'importazione precedente ‘S4Arrays::aperm.ArbitraryArrayGrid’ con ‘DelayedArray::aperm.ArbitraryArrayGrid’ durante il caricamento di ‘HDF5Array’”
Warning message:
“sostituzione dell'importazione precedente ‘S4Arrays::refdim’ con ‘DelayedArray::refdim’ durante il caricamento di ‘HDF5Array’”
Warning message:
“sostituzione dell'importazione precedente ‘S4Arrays::downsample’ con ‘DelayedArray::downsample’ durante il caricamento di ‘HDF5Array’”
Warning message:
“sostituzione dell'importazione precedente ‘S4Arrays::as.character.Array’ con ‘DelayedArray::as.character.Array’ durante il caricamento di ‘HDF5Array’”
Warning message:
“sostituzione dell'importazione precedente ‘S4Arrays::mapToGrid’ con ‘DelayedArray::mapToGrid’ durante il caricamento di ‘HDF5Array’”
Warning message:
“sostituzione dell'importazione precedente ‘S4Arrays::as.complex.Array’ con ‘DelayedArray::as.complex.Array’ durante il caricamento di ‘HDF5Array’”
Warning message:
“sostituzione dell'importazione precedente ‘S4Arrays::Mindex2Lindex’ con ‘DelayedArray::Mindex2Lindex’ durante il caricamento di ‘HDF5Array’”
Warning message:
“sostituzione dell'importazione precedente ‘S4Arrays::as.matrix.Array’ con ‘DelayedArray::as.matrix.Array’ durante il caricamento di ‘HDF5Array’”
Warning message:
“sostituzione dell'importazione precedente ‘S4Arrays::is_sparse’ con ‘DelayedArray::is_sparse’ durante il caricamento di ‘HDF5Array’”
Warning message:
“sostituzione dell'importazione precedente ‘S4Arrays::.__C__RegularArrayGrid’ con ‘DelayedArray::.__C__RegularArrayGrid’ durante il caricamento di ‘HDF5Array’”
Warning message:
“sostituzione dell'importazione precedente ‘S4Arrays::.__C__SafeArrayViewport’ con ‘DelayedArray::.__C__SafeArrayViewport’ durante il caricamento di ‘HDF5Array’”
Warning message:
“sostituzione dell'importazione precedente ‘S4Arrays::.__C__Array’ con ‘DelayedArray::.__C__Array’ durante il caricamento di ‘HDF5Array’”
Warning message:
“sostituzione dell'importazione precedente ‘S4Arrays::.__C__ArrayViewport’ con ‘DelayedArray::.__C__ArrayViewport’ durante il caricamento di ‘HDF5Array’”
Warning message:
“sostituzione dell'importazione precedente ‘S4Arrays::RegularArrayGrid’ con ‘DelayedArray::RegularArrayGrid’ durante il caricamento di ‘HDF5Array’”
Warning message:
“sostituzione dell'importazione precedente ‘S4Arrays::makeNindexFromArrayViewport’ con ‘DelayedArray::makeNindexFromArrayViewport’ durante il caricamento di ‘HDF5Array’”
Warning message:
“sostituzione dell'importazione precedente ‘S4Arrays::extract_array’ con ‘DelayedArray::extract_array’ durante il caricamento di ‘HDF5Array’”
Warning message:
“sostituzione dell'importazione precedente ‘S4Arrays::.__C__ArbitraryArrayGrid’ con ‘DelayedArray::.__C__ArbitraryArrayGrid’ durante il caricamento di ‘HDF5Array’”
Warning message:
“sostituzione dell'importazione precedente ‘S4Arrays::aperm.DummyArrayGrid’ con ‘DelayedArray::aperm.DummyArrayGrid’ durante il caricamento di ‘HDF5Array’”
Warning message:
“sostituzione dell'importazione precedente ‘S4Arrays::as.array.Array’ con ‘DelayedArray::as.array.Array’ durante il caricamento di ‘HDF5Array’”
Warning message:
“sostituzione dell'importazione precedente ‘S4Arrays::as.integer.Array’ con ‘DelayedArray::as.integer.Array’ durante il caricamento di ‘HDF5Array’”
Warning message:
“sostituzione dell'importazione precedente ‘S4Arrays::is_sparse<-’ con ‘DelayedArray::is_sparse<-’ durante il caricamento di ‘HDF5Array’”
Warning message:
“sostituzione dell'importazione precedente ‘S4Arrays::as.raw.Array’ con ‘DelayedArray::as.raw.Array’ durante il caricamento di ‘HDF5Array’”
Warning message:
“sostituzione dell'importazione precedente ‘S4Arrays::.__C__DummyArrayGrid’ con ‘DelayedArray::.__C__DummyArrayGrid’ durante il caricamento di ‘HDF5Array’”
Warning message:
“sostituzione dell'importazione precedente ‘S4Arrays::ArbitraryArrayGrid’ con ‘DelayedArray::ArbitraryArrayGrid’ durante il caricamento di ‘HDF5Array’”
Warning message:
“sostituzione dell'importazione precedente ‘S4Arrays::as.character.ArrayGrid’ con ‘DelayedArray::as.character.ArrayGrid’ durante il caricamento di ‘HDF5Array’”
Warning message:
“sostituzione dell'importazione precedente ‘S4Arrays::as.numeric.Array’ con ‘DelayedArray::as.numeric.Array’ durante il caricamento di ‘HDF5Array’”
Warning message:
“sostituzione dell'importazione precedente ‘S4Arrays::ArrayViewport’ con ‘DelayedArray::ArrayViewport’ durante il caricamento di ‘HDF5Array’”
Warning message:
“sostituzione dell'importazione precedente ‘S4Arrays::acbind’ con ‘DelayedArray::acbind’ durante il caricamento di ‘HDF5Array’”
Warning message:
“sostituzione dell'importazione precedente ‘S4Arrays::t.Array’ con ‘DelayedArray::t.Array’ durante il caricamento di ‘HDF5Array’”
Warning message:
“sostituzione dell'importazione precedente ‘S4Arrays::read_block’ con ‘DelayedArray::read_block’ durante il caricamento di ‘HDF5Array’”
Warning message:
“sostituzione dell'importazione precedente ‘S4Arrays::rowsum’ con ‘DelayedArray::rowsum’ durante il caricamento di ‘HDF5Array’”
Warning message:
“sostituzione dell'importazione precedente ‘S4Arrays::.__C__ArrayGrid’ con ‘DelayedArray::.__C__ArrayGrid’ durante il caricamento di ‘HDF5Array’”
Warning message:
“sostituzione dell'importazione precedente ‘S4Arrays::aperm.RegularArrayGrid’ con ‘DelayedArray::aperm.RegularArrayGrid’ durante il caricamento di ‘HDF5Array’”
Warning message:
“sostituzione dell'importazione precedente ‘S4Arrays::as.vector.Array’ con ‘DelayedArray::as.vector.Array’ durante il caricamento di ‘HDF5Array’”
Warning message:
“sostituzione dell'importazione precedente ‘S4Arrays::Lindex2Mindex’ con ‘DelayedArray::Lindex2Mindex’ durante il caricamento di ‘HDF5Array’”
Warning message:
“sostituzione dell'importazione precedente ‘S4Arrays::colsum’ con ‘DelayedArray::colsum’ durante il caricamento di ‘HDF5Array’”
Warning message:
“sostituzione dell'importazione precedente ‘S4Arrays::mapToRef’ con ‘DelayedArray::mapToRef’ durante il caricamento di ‘HDF5Array’”
Warning message:
“sostituzione dell'importazione precedente ‘S4Arrays::as.data.frame.Array’ con ‘DelayedArray::as.data.frame.Array’ durante il caricamento di ‘HDF5Array’”
Warning message:
“sostituzione dell'importazione precedente ‘S4Arrays::as.logical.Array’ con ‘DelayedArray::as.logical.Array’ durante il caricamento di ‘HDF5Array’”
Warning message:
“trovate tabelle metodi multiple per ‘extract_array’”
Warning message:
“trovate tabelle metodi multiple per ‘is_sparse’”
Warning message:
“trovate tabelle metodi multiple per ‘is_sparse<-’”
Warning message:
“trovate tabelle metodi multiple per ‘write_block’”
datadir <- dir("../data", "filtered_feature_bc_matrix$", 
               full.names = TRUE, recursive = TRUE,
               include.dirs = TRUE)
names(datadir) <- sapply(strsplit(datadir, "/"), .subset, 3)
datadir
donor1_fat
'../data/donor1_fat/count/sample_filtered_feature_bc_matrix'
donor1_skin
'../data/donor1_skin/count/sample_filtered_feature_bc_matrix'
donor2_fat
'../data/donor2_fat/count/sample_filtered_feature_bc_matrix'
donor3_fat
'../data/donor3_fat/count/sample_filtered_feature_bc_matrix'
donor3_skin
'../data/donor3_skin/count/sample_filtered_feature_bc_matrix'
donor4_fat
'../data/donor4_fat/count/sample_filtered_feature_bc_matrix'
donor4_skin
'../data/donor4_skin/count/sample_filtered_feature_bc_matrix'
donor5_fat
'../data/donor5_fat/count/sample_filtered_feature_bc_matrix'
donor5_recovery
'../data/donor5_recovery/filtered_feature_bc_matrix'
donor5_skin
'../data/donor5_skin/count/sample_filtered_feature_bc_matrix'
donor6_fat
'../data/donor6_fat/count/sample_filtered_feature_bc_matrix'
donor6_skin
'../data/donor6_skin/count/sample_filtered_feature_bc_matrix'
donor7_fat
'../data/donor7_fat/count/sample_filtered_feature_bc_matrix'
donor7_skin
'../data/donor7_skin/count/sample_filtered_feature_bc_matrix'
stub <- "https://docs.google.com/spreadsheets/d/"
md_sheet <- paste0(stub, "1yEqqOHX7TY1A-lmEQu3cPcFY60IconZWR6W349xH2pY")
md_sheet
'https://docs.google.com/spreadsheets/d/1yEqqOHX7TY1A-lmEQu3cPcFY60IconZWR6W349xH2pY'
googlesheets4::gs4_deauth()
md <- googlesheets4::read_sheet(md_sheet, sheet = "single-cell") %>%
    filter(keep == 1)
md
✔ Reading from halin-bauer-hLECs-metadata.

✔ Range ''single-cell''.
A tibble: 12 × 8
sample_name donor tissue tissue_origin sequencing_run keep sex notes
<chr> <dbl> <chr> <chr> <dbl> <dbl> <chr> <chr>
donor1_fat 1 fat abdomen 1 1 F NA
donor1_skin 1 skin abdomen 1 1 F NA
donor2_fat 2 fat arm 1 1 F NA
donor3_fat 3 fat abdomen 2 1 F has contamination
donor3_skin 3 skin abdomen 2 1 F NA
donor4_fat 4 fat abdomen 2 1 F NA
donor4_skin 4 skin abdomen 2 1 F NA
donor5_recovery 5 mixed abdomen 4 1 ? recovered sample
donor6_fat 6 fat abdomen 3 1 M NA
donor6_skin 6 skin abdomen 3 1 M NA
donor7_fat 7 fat thigh 3 1 ? has contamination
donor7_skin 7 skin thigh 3 1 ? NA
datadir <- datadir[md$sample_name]
print(all(names(datadir)==md$sample_name))
datadir
[1] TRUE
donor1_fat
'../data/donor1_fat/count/sample_filtered_feature_bc_matrix'
donor1_skin
'../data/donor1_skin/count/sample_filtered_feature_bc_matrix'
donor2_fat
'../data/donor2_fat/count/sample_filtered_feature_bc_matrix'
donor3_fat
'../data/donor3_fat/count/sample_filtered_feature_bc_matrix'
donor3_skin
'../data/donor3_skin/count/sample_filtered_feature_bc_matrix'
donor4_fat
'../data/donor4_fat/count/sample_filtered_feature_bc_matrix'
donor4_skin
'../data/donor4_skin/count/sample_filtered_feature_bc_matrix'
donor5_recovery
'../data/donor5_recovery/filtered_feature_bc_matrix'
donor6_fat
'../data/donor6_fat/count/sample_filtered_feature_bc_matrix'
donor6_skin
'../data/donor6_skin/count/sample_filtered_feature_bc_matrix'
donor7_fat
'../data/donor7_fat/count/sample_filtered_feature_bc_matrix'
donor7_skin
'../data/donor7_skin/count/sample_filtered_feature_bc_matrix'
fs <- split(datadir, md$sequencing_run)
fs <- lapply(fs, function(u) {
    rc <- DropletUtils::read10xCounts(u)
    nr <- nrow(rc)
    if(any(grep("Multiplexing", rowData(rc)$Type))) {
        rc <- rc[rowData(rc)$Type != "Multiplexing Capture",]
        removed <- "barcodes"
    }
    else {
        rc <- rc[-grep("NA.[1-6]", rownames(rc)),]
        removed <- "features"
    }
    cat(sprintf(
        "%s: removing %d %s; %d features left.\n", paste0(names(u), collapse=","), 
        nr-nrow(rc), removed, nrow(rc)
    ))
    return(rc)
})

fs
donor1_fat,donor1_skin,donor2_fat: removing 3 barcodes; 21134 features left.
donor3_fat,donor3_skin,donor4_fat,donor4_skin: removing 4 barcodes; 21134 features left.
donor6_fat,donor6_skin,donor7_fat,donor7_skin: removing 6 barcodes; 21134 features left.
donor5_recovery: removing 6 features; 21134 features left.
$`1`
class: SingleCellExperiment 
dim: 21134 6891 
metadata(1): Samples
assays(1): counts
rownames(21134): ENSG00000186092 ENSG00000284733 ... ENSG00000278817
  ENSG00000277196
rowData names(3): ID Symbol Type
colnames: NULL
colData names(2): Sample Barcode
reducedDimNames(0):
mainExpName: NULL
altExpNames(0):

$`2`
class: SingleCellExperiment 
dim: 21134 2759 
metadata(1): Samples
assays(1): counts
rownames(21134): ENSG00000186092 ENSG00000284733 ... ENSG00000278817
  ENSG00000277196
rowData names(3): ID Symbol Type
colnames: NULL
colData names(2): Sample Barcode
reducedDimNames(0):
mainExpName: NULL
altExpNames(0):

$`3`
class: SingleCellExperiment 
dim: 21134 8336 
metadata(1): Samples
assays(1): counts
rownames(21134): ENSG00000186092 ENSG00000284733 ... ENSG00000278817
  ENSG00000277196
rowData names(3): ID Symbol Type
colnames: NULL
colData names(2): Sample Barcode
reducedDimNames(0):
mainExpName: NULL
altExpNames(0):

$`4`
class: SingleCellExperiment 
dim: 21134 4889 
metadata(1): Samples
assays(1): counts
rownames(21134): ENSG00000186092 ENSG00000284733 ... ENSG00000278817
  ENSG00000277196
rowData names(3): ID Symbol Type
colnames: NULL
colData names(2): Sample Barcode
reducedDimNames(0):
mainExpName: NULL
altExpNames(0):
sce <- SingleCellExperiment(
    assays = SimpleList(
        counts = do.call("cbind", lapply(fs, counts))
    ),
    rowData = rowData(fs[[1]]),
    colData = do.call("rbind", lapply(fs, colData))
)
table(sce$Sample)

     donor1_fat     donor1_skin      donor2_fat      donor3_fat     donor3_skin 
            162            3861            2868            1133             620 
     donor4_fat     donor4_skin donor5_recovery      donor6_fat     donor6_skin 
            131             875            4889            2001            1715 
     donor7_fat     donor7_skin 
           1713            2907 
colData(sce) <- colData(sce) %>% as.data.frame %>%
                left_join(md %>% select(-keep,-notes), by = c("Sample"="sample_name")) %>% DataFrame
colData(sce)
DataFrame with 22875 rows and 7 columns
               Sample            Barcode     donor      tissue tissue_origin
          <character>        <character> <numeric> <character>   <character>
1          donor1_fat AAAGAACCACATACGT-1         1         fat       abdomen
2          donor1_fat AAAGGTAGTCCGGTCA-1         1         fat       abdomen
3          donor1_fat AAAGGTATCTCTCTTC-1         1         fat       abdomen
4          donor1_fat AACCACACAGTGGCTC-1         1         fat       abdomen
5          donor1_fat AACCCAAGTATGGGAC-1         1         fat       abdomen
...               ...                ...       ...         ...           ...
22871 donor5_recovery TTTGGTTTCGACCAAT-1         5       mixed       abdomen
22872 donor5_recovery TTTGTTGGTCCTACGG-1         5       mixed       abdomen
22873 donor5_recovery TTTGTTGGTCGCAGTC-1         5       mixed       abdomen
22874 donor5_recovery TTTGTTGGTGGCGTAA-1         5       mixed       abdomen
22875 donor5_recovery TTTGTTGTCGGCATTA-1         5       mixed       abdomen
      sequencing_run         sex
           <numeric> <character>
1                  1           F
2                  1           F
3                  1           F
4                  1           F
5                  1           F
...              ...         ...
22871              4           ?
22872              4           ?
22873              4           ?
22874              4           ?
22875              4           ?
colnames(sce) <- paste0(sce$Sample, ".", sce$Barcode)
rownames(sce) <- paste0(rowData(sce)$ID, ".", rowData(sce)$Symbol)
sce
class: SingleCellExperiment 
dim: 21134 22875 
metadata(0):
assays(1): counts
rownames(21134): ENSG00000186092.OR4F5 ENSG00000284733.OR4F29 ...
  ENSG00000278817.ENSG00000278817 ENSG00000277196.ENSG00000277196
rowData names(3): ID Symbol Type
colnames(22875): donor1_fat.AAAGAACCACATACGT-1
  donor1_fat.AAAGGTAGTCCGGTCA-1 ... donor5_recovery.TTTGTTGGTGGCGTAA-1
  donor5_recovery.TTTGTTGTCGGCATTA-1
colData names(7): Sample Barcode ... sequencing_run sex
reducedDimNames(0):
mainExpName: NULL
altExpNames(0):
# very basic filter
sce <- sce[rowSums(counts(sce))>0]
sce
class: SingleCellExperiment 
dim: 18664 22875 
metadata(0):
assays(1): counts
rownames(18664): ENSG00000187634.SAMD11 ENSG00000188976.NOC2L ...
  ENSG00000278817.ENSG00000278817 ENSG00000277196.ENSG00000277196
rowData names(3): ID Symbol Type
colnames(22875): donor1_fat.AAAGAACCACATACGT-1
  donor1_fat.AAAGGTAGTCCGGTCA-1 ... donor5_recovery.TTTGTTGGTGGCGTAA-1
  donor5_recovery.TTTGTTGTCGGCATTA-1
colData names(7): Sample Barcode ... sequencing_run sex
reducedDimNames(0):
mainExpName: NULL
altExpNames(0):
saveRDS(sce, file="../output/0.0-sce-unfiltered.rds")
is.mito <- grepl("\\.mt-", rownames(sce), ignore.case = TRUE)
rownames(sce)[is.mito]
sum(is.mito)
  1. 'ENSG00000210049.MT-TF'
  2. 'ENSG00000211459.MT-RNR1'
  3. 'ENSG00000210077.MT-TV'
  4. 'ENSG00000210082.MT-RNR2'
  5. 'ENSG00000209082.MT-TL1'
  6. 'ENSG00000198888.MT-ND1'
  7. 'ENSG00000210100.MT-TI'
  8. 'ENSG00000210107.MT-TQ'
  9. 'ENSG00000210112.MT-TM'
  10. 'ENSG00000198763.MT-ND2'
  11. 'ENSG00000210117.MT-TW'
  12. 'ENSG00000210127.MT-TA'
  13. 'ENSG00000210135.MT-TN'
  14. 'ENSG00000210140.MT-TC'
  15. 'ENSG00000210144.MT-TY'
  16. 'ENSG00000198804.MT-CO1'
  17. 'ENSG00000210151.MT-TS1'
  18. 'ENSG00000210154.MT-TD'
  19. 'ENSG00000198712.MT-CO2'
  20. 'ENSG00000210156.MT-TK'
  21. 'ENSG00000228253.MT-ATP8'
  22. 'ENSG00000198899.MT-ATP6'
  23. 'ENSG00000198938.MT-CO3'
  24. 'ENSG00000210164.MT-TG'
  25. 'ENSG00000198840.MT-ND3'
  26. 'ENSG00000210174.MT-TR'
  27. 'ENSG00000212907.MT-ND4L'
  28. 'ENSG00000198886.MT-ND4'
  29. 'ENSG00000210176.MT-TH'
  30. 'ENSG00000210184.MT-TS2'
  31. 'ENSG00000210191.MT-TL2'
  32. 'ENSG00000198786.MT-ND5'
  33. 'ENSG00000198695.MT-ND6'
  34. 'ENSG00000210194.MT-TE'
  35. 'ENSG00000198727.MT-CYB'
  36. 'ENSG00000210195.MT-TT'
  37. 'ENSG00000210196.MT-TP'
37
sce <- addPerCellQC(sce, subsets=list(Mito=is.mito), percent_top=c(50,100,200,500))
sce <- sce[!is.mito]
head(colData(sce),3)
DataFrame with 3 rows and 17 columns
                                   Sample            Barcode     donor
                              <character>        <character> <numeric>
donor1_fat.AAAGAACCACATACGT-1  donor1_fat AAAGAACCACATACGT-1         1
donor1_fat.AAAGGTAGTCCGGTCA-1  donor1_fat AAAGGTAGTCCGGTCA-1         1
donor1_fat.AAAGGTATCTCTCTTC-1  donor1_fat AAAGGTATCTCTCTTC-1         1
                                   tissue tissue_origin sequencing_run
                              <character>   <character>      <numeric>
donor1_fat.AAAGAACCACATACGT-1         fat       abdomen              1
donor1_fat.AAAGGTAGTCCGGTCA-1         fat       abdomen              1
donor1_fat.AAAGGTATCTCTCTTC-1         fat       abdomen              1
                                      sex       sum  detected percent.top_50
                              <character> <numeric> <integer>      <numeric>
donor1_fat.AAAGAACCACATACGT-1           F      4276      1721        33.8868
donor1_fat.AAAGGTAGTCCGGTCA-1           F      3023      1084        39.6626
donor1_fat.AAAGGTATCTCTCTTC-1           F      3892      1422        34.1213
                              percent.top_100 percent.top_200 percent.top_500
                                    <numeric>       <numeric>       <numeric>
donor1_fat.AAAGAACCACATACGT-1         42.7736         52.9935         69.3171
donor1_fat.AAAGGTAGTCCGGTCA-1         52.9937         65.0017         80.6814
donor1_fat.AAAGGTATCTCTCTTC-1         46.5570         58.3505         75.9250
                              subsets_Mito_sum subsets_Mito_detected
                                     <numeric>             <integer>
donor1_fat.AAAGAACCACATACGT-1              752                    16
donor1_fat.AAAGGTAGTCCGGTCA-1               52                    12
donor1_fat.AAAGGTATCTCTCTTC-1               48                    12
                              subsets_Mito_percent     total
                                         <numeric> <numeric>
donor1_fat.AAAGAACCACATACGT-1             17.58653      4276
donor1_fat.AAAGGTAGTCCGGTCA-1              1.72015      3023
donor1_fat.AAAGGTATCTCTCTTC-1              1.23330      3892
cd_df <- colData(sce) %>% as.data.frame
cd_df
A data.frame: 22875 × 17
Sample Barcode donor tissue tissue_origin sequencing_run sex sum detected percent.top_50 percent.top_100 percent.top_200 percent.top_500 subsets_Mito_sum subsets_Mito_detected subsets_Mito_percent total
<chr> <chr> <dbl> <chr> <chr> <dbl> <chr> <dbl> <int> <dbl> <dbl> <dbl> <dbl> <dbl> <int> <dbl> <dbl>
donor1_fat.AAAGAACCACATACGT-1 donor1_fat AAAGAACCACATACGT-1 1 fat abdomen 1 F 4276 1721 33.88681 42.77362 52.99345 69.31712 752 16 17.5865295 4276
donor1_fat.AAAGGTAGTCCGGTCA-1 donor1_fat AAAGGTAGTCCGGTCA-1 1 fat abdomen 1 F 3023 1084 39.66259 52.99371 65.00165 80.68144 52 12 1.7201456 3023
donor1_fat.AAAGGTATCTCTCTTC-1 donor1_fat AAAGGTATCTCTCTTC-1 1 fat abdomen 1 F 3892 1422 34.12127 46.55704 58.35046 75.92497 48 12 1.2332991 3892
donor1_fat.AACCACACAGTGGCTC-1 donor1_fat AACCACACAGTGGCTC-1 1 fat abdomen 1 F 7722 2633 26.89718 38.12484 48.67910 64.12846 103 13 1.3338513 7722
donor1_fat.AACCCAAGTATGGGAC-1 donor1_fat AACCCAAGTATGGGAC-1 1 fat abdomen 1 F 636 178 79.87421 87.73585 100.00000 100.00000 445 15 69.9685535 636
donor1_fat.AACGGGATCTGCTGAA-1 donor1_fat AACGGGATCTGCTGAA-1 1 fat abdomen 1 F 3256 1284 34.33661 46.80590 59.06020 75.92138 123 11 3.7776413 3256
donor1_fat.AAGAACATCTGTGCAA-1 donor1_fat AAGAACATCTGTGCAA-1 1 fat abdomen 1 F 6777 1989 32.86115 47.38085 60.01180 74.07407 224 14 3.3052973 6777
donor1_fat.AAGCATCTCGATCCCT-1 donor1_fat AAGCATCTCGATCCCT-1 1 fat abdomen 1 F 1746 839 34.07789 47.53723 61.45475 80.58419 63 11 3.6082474 1746
donor1_fat.AAGCGAGAGTATCCTG-1 donor1_fat AAGCGAGAGTATCCTG-1 1 fat abdomen 1 F 6750 2393 24.08889 35.12593 46.69630 63.71852 277 18 4.1037037 6750
donor1_fat.AAGTTCGAGGCAGGTT-1 donor1_fat AAGTTCGAGGCAGGTT-1 1 fat abdomen 1 F 5707 2041 31.20729 43.42036 54.17908 68.91537 188 12 3.2942001 5707
donor1_fat.AATCGACCAATTGCAC-1 donor1_fat AATCGACCAATTGCAC-1 1 fat abdomen 1 F 3401 1534 26.60982 37.37136 49.51485 68.92091 107 15 3.1461335 3401
donor1_fat.ACAAAGACAATGACCT-1 donor1_fat ACAAAGACAATGACCT-1 1 fat abdomen 1 F 5851 1802 32.49017 45.70159 58.43446 74.67100 106 16 1.8116561 5851
donor1_fat.ACAAAGACACTAACGT-1 donor1_fat ACAAAGACACTAACGT-1 1 fat abdomen 1 F 3602 1004 43.80900 59.35591 72.01555 86.00777 60 11 1.6657413 3602
donor1_fat.ACAACCAAGGGCTTCC-1 donor1_fat ACAACCAAGGGCTTCC-1 1 fat abdomen 1 F 10238 3273 22.24067 33.03380 44.50088 59.89451 168 12 1.6409455 10238
donor1_fat.ACAGGGACACACTTAG-1 donor1_fat ACAGGGACACACTTAG-1 1 fat abdomen 1 F 606 63 97.85479 100.00000 100.00000 100.00000 556 15 91.7491749 606
donor1_fat.ACAGGGATCTCATAGG-1 donor1_fat ACAGGGATCTCATAGG-1 1 fat abdomen 1 F 5210 1884 27.96545 40.07678 53.03263 69.17466 105 13 2.0153551 5210
donor1_fat.ACATTTCCACTCCACT-1 donor1_fat ACATTTCCACTCCACT-1 1 fat abdomen 1 F 3606 1305 36.30061 49.16805 61.53633 77.67610 33 11 0.9151414 3606
donor1_fat.ACATTTCTCGATGGAG-1 donor1_fat ACATTTCTCGATGGAG-1 1 fat abdomen 1 F 3853 1491 34.07734 47.31378 58.44796 74.27978 68 13 1.7648586 3853
donor1_fat.ACCCTTGTCACCATAG-1 donor1_fat ACCCTTGTCACCATAG-1 1 fat abdomen 1 F 4627 1604 34.92544 48.32505 59.39053 74.82170 84 12 1.8154312 4627
donor1_fat.ACCTACCAGACCTCCG-1 donor1_fat ACCTACCAGACCTCCG-1 1 fat abdomen 1 F 1732 651 46.76674 60.56582 73.78753 91.28176 41 12 2.3672055 1732
donor1_fat.ACGGAAGCACACCTAA-1 donor1_fat ACGGAAGCACACCTAA-1 1 fat abdomen 1 F 5069 2279 17.65634 25.42908 36.41744 56.77648 369 14 7.2795423 5069
donor1_fat.ACGTAACAGTCTAGCT-1 donor1_fat ACGTAACAGTCTAGCT-1 1 fat abdomen 1 F 1188 491 60.43771 67.08754 75.50505 100.00000 620 18 52.1885522 1188
donor1_fat.ACGTAGTTCCCGAAAT-1 donor1_fat ACGTAGTTCCCGAAAT-1 1 fat abdomen 1 F 3897 1246 36.23300 49.73056 62.63793 80.70310 39 11 1.0007698 3897
donor1_fat.ACGTTCCAGATGAATC-1 donor1_fat ACGTTCCAGATGAATC-1 1 fat abdomen 1 F 1884 1136 28.60934 36.57113 47.29299 66.24204 280 13 14.8619958 1884
donor1_fat.ACTCTCGAGCCGTTGC-1 donor1_fat ACTCTCGAGCCGTTGC-1 1 fat abdomen 1 F 1220 611 41.96721 53.77049 66.31148 90.90164 154 15 12.6229508 1220
donor1_fat.ACTTCCGTCAGGAACG-1 donor1_fat ACTTCCGTCAGGAACG-1 1 fat abdomen 1 F 4898 2364 17.29277 24.37730 34.29971 53.14414 367 16 7.4928542 4898
donor1_fat.AGACACTCAGGCGATA-1 donor1_fat AGACACTCAGGCGATA-1 1 fat abdomen 1 F 4601 1518 33.51445 46.70724 59.70441 76.26603 171 12 3.7165834 4601
donor1_fat.AGACCATTCAAAGGTA-1 donor1_fat AGACCATTCAAAGGTA-1 1 fat abdomen 1 F 7030 2375 27.28307 38.50640 50.54054 66.28734 27 10 0.3840683 7030
donor1_fat.AGAGAGCCAAGCCCAC-1 donor1_fat AGAGAGCCAAGCCCAC-1 1 fat abdomen 1 F 3437 1047 43.26447 57.81205 69.53739 84.08496 85 12 2.4730870 3437
donor1_fat.AGAGCCCAGTCTAGCT-1 donor1_fat AGAGCCCAGTCTAGCT-1 1 fat abdomen 1 F 4781 1680 33.44489 46.37105 58.12592 73.41560 110 14 2.3007739 4781
donor5_recovery.TTTCGATAGTGGAATT-1 donor5_recovery TTTCGATAGTGGAATT-1 5 mixed abdomen 4 ? 3048 1575 21.42388 31.33202 42.84777 64.20604 139 16 4.5603675 3048
donor5_recovery.TTTCGATGTGCTGATT-1 donor5_recovery TTTCGATGTGCTGATT-1 5 mixed abdomen 4 ? 2238 1400 17.20286 25.24576 36.90795 59.78552 57 15 2.5469169 2238
donor5_recovery.TTTGACTAGATGGGCT-1 donor5_recovery TTTGACTAGATGGGCT-1 5 mixed abdomen 4 ? 2448 1208 27.69608 39.95098 53.10458 71.07843 95 16 3.8807190 2448
donor5_recovery.TTTGACTAGTGTTCAC-1 donor5_recovery TTTGACTAGTGTTCAC-1 5 mixed abdomen 4 ? 6499 2564 24.23450 34.06678 44.72996 60.70165 78 13 1.2001846 6499
donor5_recovery.TTTGACTGTCCAAATC-1 donor5_recovery TTTGACTGTCCAAATC-1 5 mixed abdomen 4 ? 958 673 24.32150 35.80376 50.62630 81.94154 8 4 0.8350731 958
donor5_recovery.TTTGACTGTGATTCTG-1 donor5_recovery TTTGACTGTGATTCTG-1 5 mixed abdomen 4 ? 1568 955 26.97704 37.75510 50.70153 70.98214 71 14 4.5280612 1568
donor5_recovery.TTTGACTGTTGTCTAG-1 donor5_recovery TTTGACTGTTGTCTAG-1 5 mixed abdomen 4 ? 936 593 29.70085 42.30769 58.01282 90.06410 38 11 4.0598291 936
donor5_recovery.TTTGATCAGATGACCG-1 donor5_recovery TTTGATCAGATGACCG-1 5 mixed abdomen 4 ? 956 596 30.75314 43.61925 58.57741 89.95816 25 8 2.6150628 956
donor5_recovery.TTTGATCAGCAATAAC-1 donor5_recovery TTTGATCAGCAATAAC-1 5 mixed abdomen 4 ? 2148 939 34.35754 48.51024 61.17318 79.56238 71 14 3.3054004 2148
donor5_recovery.TTTGATCAGTTACTCG-1 donor5_recovery TTTGATCAGTTACTCG-1 5 mixed abdomen 4 ? 3145 1486 21.90779 32.84579 46.45469 67.59936 66 15 2.0985692 3145
donor5_recovery.TTTGATCGTTGGGCCT-1 donor5_recovery TTTGATCGTTGGGCCT-1 5 mixed abdomen 4 ? 2897 1316 30.54884 42.18157 54.57370 71.83293 182 17 6.2823611 2897
donor5_recovery.TTTGATCTCAAAGGTA-1 donor5_recovery TTTGATCTCAAAGGTA-1 5 mixed abdomen 4 ? 2155 1136 26.07889 36.98376 50.06961 70.48724 98 14 4.5475638 2155
donor5_recovery.TTTGGAGAGTGCAAAT-1 donor5_recovery TTTGGAGAGTGCAAAT-1 5 mixed abdomen 4 ? 1054 601 34.91461 48.10247 61.95446 90.41746 43 14 4.0796964 1054
donor5_recovery.TTTGGAGCATAGGTAA-1 donor5_recovery TTTGGAGCATAGGTAA-1 5 mixed abdomen 4 ? 1846 1050 23.34778 33.91116 47.50813 70.20585 89 14 4.8212351 1846
donor5_recovery.TTTGGAGGTCAGTTTG-1 donor5_recovery TTTGGAGGTCAGTTTG-1 5 mixed abdomen 4 ? 1222 769 26.67758 38.21604 53.43699 77.98691 51 13 4.1734861 1222
donor5_recovery.TTTGGAGGTCCAAGAG-1 donor5_recovery TTTGGAGGTCCAAGAG-1 5 mixed abdomen 4 ? 1829 1058 27.28267 37.88956 49.64461 69.49153 28 12 1.5308912 1829
donor5_recovery.TTTGGAGGTCGACTTA-1 donor5_recovery TTTGGAGGTCGACTTA-1 5 mixed abdomen 4 ? 2389 1430 17.91545 26.28715 38.21683 61.07158 154 21 6.4462118 2389
donor5_recovery.TTTGGAGGTTGAGAGC-1 donor5_recovery TTTGGAGGTTGAGAGC-1 5 mixed abdomen 4 ? 1618 993 21.69345 32.26205 46.66255 69.53028 38 11 2.3485785 1618
donor5_recovery.TTTGGAGTCCAAGAGG-1 donor5_recovery TTTGGAGTCCAAGAGG-1 5 mixed abdomen 4 ? 1262 830 23.85103 34.62758 50.07924 73.85103 69 14 5.4675119 1262
donor5_recovery.TTTGGAGTCTCAACCC-1 donor5_recovery TTTGGAGTCTCAACCC-1 5 mixed abdomen 4 ? 1135 717 29.51542 40.79295 54.44934 80.88106 18 10 1.5859031 1135
donor5_recovery.TTTGGTTAGCCTCTTC-1 donor5_recovery TTTGGTTAGCCTCTTC-1 5 mixed abdomen 4 ? 763 584 24.90170 36.56619 49.67235 88.99083 24 8 3.1454784 763
donor5_recovery.TTTGGTTCACTCTAGA-1 donor5_recovery TTTGGTTCACTCTAGA-1 5 mixed abdomen 4 ? 812 570 27.58621 40.14778 54.43350 91.37931 24 8 2.9556650 812
donor5_recovery.TTTGGTTGTACGTGAG-1 donor5_recovery TTTGGTTGTACGTGAG-1 5 mixed abdomen 4 ? 755 494 30.99338 44.90066 61.05960 100.00000 34 9 4.5033113 755
donor5_recovery.TTTGGTTGTCCTACAA-1 donor5_recovery TTTGGTTGTCCTACAA-1 5 mixed abdomen 4 ? 835 625 24.07186 36.04790 49.10180 85.02994 27 6 3.2335329 835
donor5_recovery.TTTGGTTGTGACTCTA-1 donor5_recovery TTTGGTTGTGACTCTA-1 5 mixed abdomen 4 ? 938 572 29.63753 43.39019 60.34115 92.32409 2 2 0.2132196 938
donor5_recovery.TTTGGTTTCGACCAAT-1 donor5_recovery TTTGGTTTCGACCAAT-1 5 mixed abdomen 4 ? 1328 670 34.33735 48.34337 64.30723 87.19880 67 10 5.0451807 1328
donor5_recovery.TTTGTTGGTCCTACGG-1 donor5_recovery TTTGTTGGTCCTACGG-1 5 mixed abdomen 4 ? 795 552 28.30189 41.63522 55.72327 93.45912 44 12 5.5345912 795
donor5_recovery.TTTGTTGGTCGCAGTC-1 donor5_recovery TTTGTTGGTCGCAGTC-1 5 mixed abdomen 4 ? 1872 1250 16.18590 24.73291 37.01923 59.93590 66 14 3.5256410 1872
donor5_recovery.TTTGTTGGTGGCGTAA-1 donor5_recovery TTTGTTGGTGGCGTAA-1 5 mixed abdomen 4 ? 1928 931 33.14315 46.21369 58.97303 77.64523 51 13 2.6452282 1928
donor5_recovery.TTTGTTGTCGGCATTA-1 donor5_recovery TTTGTTGTCGGCATTA-1 5 mixed abdomen 4 ? 2091 1206 21.95122 32.56815 45.28934 66.23625 53 14 2.5346724 2091
options(repr.plot.width=20, repr.plot.height=20)

ggplot(cd_df, aes(sum, detected)) +
    geom_point(size=.5) +
    scale_x_log10() +
    scale_y_log10() +
    geom_density_2d(contour_var = "ndensity") +
    facet_wrap(~Sample)

options(repr.plot.width=12, repr.plot.height=6)

ggplot(cd_df, aes(x=sum, color=Sample)) +
    geom_density(size=4) +
    scale_x_log10()
Warning message:
“Using `size` aesthetic for lines was deprecated in ggplot2 3.4.0.
ℹ Please use `linewidth` instead.”

options(repr.plot.width=12, repr.plot.height=6)

ggplot(cd_df, aes(x=detected, color=Sample)) +
  geom_density(linewidth=4) +
  scale_x_log10()

options(repr.plot.width=12, repr.plot.height=12)

ggplot(cd_df, aes(x=Sample, y=sum)) +
    geom_violin() +
    geom_jitter() +
    scale_y_log10()

options(repr.plot.width=20, repr.plot.height=20)

ggplot(cd_df, aes(sum, percent.top_50)) +
    geom_point(size=.5) +
    scale_x_log10() +
    geom_density_2d(contour_var = "ndensity") +
    facet_wrap(~Sample)

options(repr.plot.width=20, repr.plot.height=20)

ggplot(cd_df, aes(sum, subsets_Mito_percent)) +
    geom_point(size=.5) +
    scale_x_log10() +
    scale_y_sqrt() +
    geom_density_2d(contour_var = "ndensity") +
    facet_wrap(~Sample)

mito_cutoff <- 30
detected_cutoff <- 200
with(cd_df, table(Sample, detected < detected_cutoff))
with(cd_df, table(Sample, subsets_Mito_percent > mito_cutoff))
with(cd_df, table(Sample, subsets_Mito_percent > mito_cutoff | detected < detected_cutoff))
                 
Sample            FALSE TRUE
  donor1_fat        159    3
  donor1_skin      3844   17
  donor2_fat       2852   16
  donor3_fat       1122   11
  donor3_skin       611    9
  donor4_fat        123    8
  donor4_skin       810   65
  donor5_recovery  4887    2
  donor6_fat       2000    1
  donor6_skin      1715    0
  donor7_fat       1713    0
  donor7_skin      2907    0
                 
Sample            FALSE TRUE
  donor1_fat        158    4
  donor1_skin      3804   57
  donor2_fat       2823   45
  donor3_fat       1063   70
  donor3_skin       573   47
  donor4_fat         89   42
  donor4_skin       638  237
  donor5_recovery  4880    9
  donor6_fat       1994    7
  donor6_skin      1710    5
  donor7_fat       1708    5
  donor7_skin      2898    9
                 
Sample            FALSE TRUE
  donor1_fat        158    4
  donor1_skin      3804   57
  donor2_fat       2823   45
  donor3_fat       1063   70
  donor3_skin       573   47
  donor4_fat         89   42
  donor4_skin       638  237
  donor5_recovery  4879   10
  donor6_fat       1994    7
  donor6_skin      1710    5
  donor7_fat       1708    5
  donor7_skin      2898    9
sce <- sce[, (sce$subsets_Mito_percent < mito_cutoff) & (sce$detected > detected_cutoff)]
sce
class: SingleCellExperiment 
dim: 18627 22337 
metadata(0):
assays(1): counts
rownames(18627): ENSG00000187634.SAMD11 ENSG00000188976.NOC2L ...
  ENSG00000278817.ENSG00000278817 ENSG00000277196.ENSG00000277196
rowData names(3): ID Symbol Type
colnames(22337): donor1_fat.AAAGAACCACATACGT-1
  donor1_fat.AAAGGTAGTCCGGTCA-1 ... donor5_recovery.TTTGTTGGTGGCGTAA-1
  donor5_recovery.TTTGTTGTCGGCATTA-1
colData names(17): Sample Barcode ... subsets_Mito_percent total
reducedDimNames(0):
mainExpName: NULL
altExpNames(0):
table(sce$tissue)

  fat mixed  skin 
 7835  4879  9623 
cd_df <- colData(sce) %>% as.data.frame

cd_df <- cd_df %>% mutate(
    outlier_sum=isOutlier(
        sum, nmads=4, type="both", log=TRUE, batch=Sample
    ),
    outlier_detected=isOutlier(
        detected, nmads=4, type="both", log=TRUE, batch=Sample
    )
)

cd_df
A data.frame: 22337 × 19
Sample Barcode donor tissue tissue_origin sequencing_run sex sum detected percent.top_50 percent.top_100 percent.top_200 percent.top_500 subsets_Mito_sum subsets_Mito_detected subsets_Mito_percent total outlier_sum outlier_detected
<chr> <chr> <dbl> <chr> <chr> <dbl> <chr> <dbl> <int> <dbl> <dbl> <dbl> <dbl> <dbl> <int> <dbl> <dbl> <otlr.flt> <otlr.flt>
donor1_fat.AAAGAACCACATACGT-1 donor1_fat AAAGAACCACATACGT-1 1 fat abdomen 1 F 4276 1721 33.88681 42.77362 52.99345 69.31712 752 16 17.5865295 4276 FALSE FALSE
donor1_fat.AAAGGTAGTCCGGTCA-1 donor1_fat AAAGGTAGTCCGGTCA-1 1 fat abdomen 1 F 3023 1084 39.66259 52.99371 65.00165 80.68144 52 12 1.7201456 3023 FALSE FALSE
donor1_fat.AAAGGTATCTCTCTTC-1 donor1_fat AAAGGTATCTCTCTTC-1 1 fat abdomen 1 F 3892 1422 34.12127 46.55704 58.35046 75.92497 48 12 1.2332991 3892 FALSE FALSE
donor1_fat.AACCACACAGTGGCTC-1 donor1_fat AACCACACAGTGGCTC-1 1 fat abdomen 1 F 7722 2633 26.89718 38.12484 48.67910 64.12846 103 13 1.3338513 7722 FALSE FALSE
donor1_fat.AACGGGATCTGCTGAA-1 donor1_fat AACGGGATCTGCTGAA-1 1 fat abdomen 1 F 3256 1284 34.33661 46.80590 59.06020 75.92138 123 11 3.7776413 3256 FALSE FALSE
donor1_fat.AAGAACATCTGTGCAA-1 donor1_fat AAGAACATCTGTGCAA-1 1 fat abdomen 1 F 6777 1989 32.86115 47.38085 60.01180 74.07407 224 14 3.3052973 6777 FALSE FALSE
donor1_fat.AAGCATCTCGATCCCT-1 donor1_fat AAGCATCTCGATCCCT-1 1 fat abdomen 1 F 1746 839 34.07789 47.53723 61.45475 80.58419 63 11 3.6082474 1746 FALSE FALSE
donor1_fat.AAGCGAGAGTATCCTG-1 donor1_fat AAGCGAGAGTATCCTG-1 1 fat abdomen 1 F 6750 2393 24.08889 35.12593 46.69630 63.71852 277 18 4.1037037 6750 FALSE FALSE
donor1_fat.AAGTTCGAGGCAGGTT-1 donor1_fat AAGTTCGAGGCAGGTT-1 1 fat abdomen 1 F 5707 2041 31.20729 43.42036 54.17908 68.91537 188 12 3.2942001 5707 FALSE FALSE
donor1_fat.AATCGACCAATTGCAC-1 donor1_fat AATCGACCAATTGCAC-1 1 fat abdomen 1 F 3401 1534 26.60982 37.37136 49.51485 68.92091 107 15 3.1461335 3401 FALSE FALSE
donor1_fat.ACAAAGACAATGACCT-1 donor1_fat ACAAAGACAATGACCT-1 1 fat abdomen 1 F 5851 1802 32.49017 45.70159 58.43446 74.67100 106 16 1.8116561 5851 FALSE FALSE
donor1_fat.ACAAAGACACTAACGT-1 donor1_fat ACAAAGACACTAACGT-1 1 fat abdomen 1 F 3602 1004 43.80900 59.35591 72.01555 86.00777 60 11 1.6657413 3602 FALSE FALSE
donor1_fat.ACAACCAAGGGCTTCC-1 donor1_fat ACAACCAAGGGCTTCC-1 1 fat abdomen 1 F 10238 3273 22.24067 33.03380 44.50088 59.89451 168 12 1.6409455 10238 FALSE FALSE
donor1_fat.ACAGGGATCTCATAGG-1 donor1_fat ACAGGGATCTCATAGG-1 1 fat abdomen 1 F 5210 1884 27.96545 40.07678 53.03263 69.17466 105 13 2.0153551 5210 FALSE FALSE
donor1_fat.ACATTTCCACTCCACT-1 donor1_fat ACATTTCCACTCCACT-1 1 fat abdomen 1 F 3606 1305 36.30061 49.16805 61.53633 77.67610 33 11 0.9151414 3606 FALSE FALSE
donor1_fat.ACATTTCTCGATGGAG-1 donor1_fat ACATTTCTCGATGGAG-1 1 fat abdomen 1 F 3853 1491 34.07734 47.31378 58.44796 74.27978 68 13 1.7648586 3853 FALSE FALSE
donor1_fat.ACCCTTGTCACCATAG-1 donor1_fat ACCCTTGTCACCATAG-1 1 fat abdomen 1 F 4627 1604 34.92544 48.32505 59.39053 74.82170 84 12 1.8154312 4627 FALSE FALSE
donor1_fat.ACCTACCAGACCTCCG-1 donor1_fat ACCTACCAGACCTCCG-1 1 fat abdomen 1 F 1732 651 46.76674 60.56582 73.78753 91.28176 41 12 2.3672055 1732 FALSE FALSE
donor1_fat.ACGGAAGCACACCTAA-1 donor1_fat ACGGAAGCACACCTAA-1 1 fat abdomen 1 F 5069 2279 17.65634 25.42908 36.41744 56.77648 369 14 7.2795423 5069 FALSE FALSE
donor1_fat.ACGTAGTTCCCGAAAT-1 donor1_fat ACGTAGTTCCCGAAAT-1 1 fat abdomen 1 F 3897 1246 36.23300 49.73056 62.63793 80.70310 39 11 1.0007698 3897 FALSE FALSE
donor1_fat.ACGTTCCAGATGAATC-1 donor1_fat ACGTTCCAGATGAATC-1 1 fat abdomen 1 F 1884 1136 28.60934 36.57113 47.29299 66.24204 280 13 14.8619958 1884 FALSE FALSE
donor1_fat.ACTCTCGAGCCGTTGC-1 donor1_fat ACTCTCGAGCCGTTGC-1 1 fat abdomen 1 F 1220 611 41.96721 53.77049 66.31148 90.90164 154 15 12.6229508 1220 FALSE FALSE
donor1_fat.ACTTCCGTCAGGAACG-1 donor1_fat ACTTCCGTCAGGAACG-1 1 fat abdomen 1 F 4898 2364 17.29277 24.37730 34.29971 53.14414 367 16 7.4928542 4898 FALSE FALSE
donor1_fat.AGACACTCAGGCGATA-1 donor1_fat AGACACTCAGGCGATA-1 1 fat abdomen 1 F 4601 1518 33.51445 46.70724 59.70441 76.26603 171 12 3.7165834 4601 FALSE FALSE
donor1_fat.AGACCATTCAAAGGTA-1 donor1_fat AGACCATTCAAAGGTA-1 1 fat abdomen 1 F 7030 2375 27.28307 38.50640 50.54054 66.28734 27 10 0.3840683 7030 FALSE FALSE
donor1_fat.AGAGAGCCAAGCCCAC-1 donor1_fat AGAGAGCCAAGCCCAC-1 1 fat abdomen 1 F 3437 1047 43.26447 57.81205 69.53739 84.08496 85 12 2.4730870 3437 FALSE FALSE
donor1_fat.AGAGCCCAGTCTAGCT-1 donor1_fat AGAGCCCAGTCTAGCT-1 1 fat abdomen 1 F 4781 1680 33.44489 46.37105 58.12592 73.41560 110 14 2.3007739 4781 FALSE FALSE
donor1_fat.AGATCCAGTGCAGTGA-1 donor1_fat AGATCCAGTGCAGTGA-1 1 fat abdomen 1 F 3119 1398 30.49054 42.70600 53.83136 71.20872 84 12 2.6931709 3119 FALSE FALSE
donor1_fat.AGATCGTGTTGCGTAT-1 donor1_fat AGATCGTGTTGCGTAT-1 1 fat abdomen 1 F 4444 1616 32.06571 45.16202 56.79568 73.33483 7 5 0.1575158 4444 FALSE FALSE
donor1_fat.AGGAGGTCAATACGAA-1 donor1_fat AGGAGGTCAATACGAA-1 1 fat abdomen 1 F 3179 1211 36.83548 49.82699 61.81189 77.63448 108 12 3.3972947 3179 FALSE FALSE
donor5_recovery.TTTCGATAGTGGAATT-1 donor5_recovery TTTCGATAGTGGAATT-1 5 mixed abdomen 4 ? 3048 1575 21.42388 31.33202 42.84777 64.20604 139 16 4.5603675 3048 FALSE FALSE
donor5_recovery.TTTCGATGTGCTGATT-1 donor5_recovery TTTCGATGTGCTGATT-1 5 mixed abdomen 4 ? 2238 1400 17.20286 25.24576 36.90795 59.78552 57 15 2.5469169 2238 FALSE FALSE
donor5_recovery.TTTGACTAGATGGGCT-1 donor5_recovery TTTGACTAGATGGGCT-1 5 mixed abdomen 4 ? 2448 1208 27.69608 39.95098 53.10458 71.07843 95 16 3.8807190 2448 FALSE FALSE
donor5_recovery.TTTGACTAGTGTTCAC-1 donor5_recovery TTTGACTAGTGTTCAC-1 5 mixed abdomen 4 ? 6499 2564 24.23450 34.06678 44.72996 60.70165 78 13 1.2001846 6499 FALSE FALSE
donor5_recovery.TTTGACTGTCCAAATC-1 donor5_recovery TTTGACTGTCCAAATC-1 5 mixed abdomen 4 ? 958 673 24.32150 35.80376 50.62630 81.94154 8 4 0.8350731 958 FALSE FALSE
donor5_recovery.TTTGACTGTGATTCTG-1 donor5_recovery TTTGACTGTGATTCTG-1 5 mixed abdomen 4 ? 1568 955 26.97704 37.75510 50.70153 70.98214 71 14 4.5280612 1568 FALSE FALSE
donor5_recovery.TTTGACTGTTGTCTAG-1 donor5_recovery TTTGACTGTTGTCTAG-1 5 mixed abdomen 4 ? 936 593 29.70085 42.30769 58.01282 90.06410 38 11 4.0598291 936 FALSE FALSE
donor5_recovery.TTTGATCAGATGACCG-1 donor5_recovery TTTGATCAGATGACCG-1 5 mixed abdomen 4 ? 956 596 30.75314 43.61925 58.57741 89.95816 25 8 2.6150628 956 FALSE FALSE
donor5_recovery.TTTGATCAGCAATAAC-1 donor5_recovery TTTGATCAGCAATAAC-1 5 mixed abdomen 4 ? 2148 939 34.35754 48.51024 61.17318 79.56238 71 14 3.3054004 2148 FALSE FALSE
donor5_recovery.TTTGATCAGTTACTCG-1 donor5_recovery TTTGATCAGTTACTCG-1 5 mixed abdomen 4 ? 3145 1486 21.90779 32.84579 46.45469 67.59936 66 15 2.0985692 3145 FALSE FALSE
donor5_recovery.TTTGATCGTTGGGCCT-1 donor5_recovery TTTGATCGTTGGGCCT-1 5 mixed abdomen 4 ? 2897 1316 30.54884 42.18157 54.57370 71.83293 182 17 6.2823611 2897 FALSE FALSE
donor5_recovery.TTTGATCTCAAAGGTA-1 donor5_recovery TTTGATCTCAAAGGTA-1 5 mixed abdomen 4 ? 2155 1136 26.07889 36.98376 50.06961 70.48724 98 14 4.5475638 2155 FALSE FALSE
donor5_recovery.TTTGGAGAGTGCAAAT-1 donor5_recovery TTTGGAGAGTGCAAAT-1 5 mixed abdomen 4 ? 1054 601 34.91461 48.10247 61.95446 90.41746 43 14 4.0796964 1054 FALSE FALSE
donor5_recovery.TTTGGAGCATAGGTAA-1 donor5_recovery TTTGGAGCATAGGTAA-1 5 mixed abdomen 4 ? 1846 1050 23.34778 33.91116 47.50813 70.20585 89 14 4.8212351 1846 FALSE FALSE
donor5_recovery.TTTGGAGGTCAGTTTG-1 donor5_recovery TTTGGAGGTCAGTTTG-1 5 mixed abdomen 4 ? 1222 769 26.67758 38.21604 53.43699 77.98691 51 13 4.1734861 1222 FALSE FALSE
donor5_recovery.TTTGGAGGTCCAAGAG-1 donor5_recovery TTTGGAGGTCCAAGAG-1 5 mixed abdomen 4 ? 1829 1058 27.28267 37.88956 49.64461 69.49153 28 12 1.5308912 1829 FALSE FALSE
donor5_recovery.TTTGGAGGTCGACTTA-1 donor5_recovery TTTGGAGGTCGACTTA-1 5 mixed abdomen 4 ? 2389 1430 17.91545 26.28715 38.21683 61.07158 154 21 6.4462118 2389 FALSE FALSE
donor5_recovery.TTTGGAGGTTGAGAGC-1 donor5_recovery TTTGGAGGTTGAGAGC-1 5 mixed abdomen 4 ? 1618 993 21.69345 32.26205 46.66255 69.53028 38 11 2.3485785 1618 FALSE FALSE
donor5_recovery.TTTGGAGTCCAAGAGG-1 donor5_recovery TTTGGAGTCCAAGAGG-1 5 mixed abdomen 4 ? 1262 830 23.85103 34.62758 50.07924 73.85103 69 14 5.4675119 1262 FALSE FALSE
donor5_recovery.TTTGGAGTCTCAACCC-1 donor5_recovery TTTGGAGTCTCAACCC-1 5 mixed abdomen 4 ? 1135 717 29.51542 40.79295 54.44934 80.88106 18 10 1.5859031 1135 FALSE FALSE
donor5_recovery.TTTGGTTAGCCTCTTC-1 donor5_recovery TTTGGTTAGCCTCTTC-1 5 mixed abdomen 4 ? 763 584 24.90170 36.56619 49.67235 88.99083 24 8 3.1454784 763 FALSE FALSE
donor5_recovery.TTTGGTTCACTCTAGA-1 donor5_recovery TTTGGTTCACTCTAGA-1 5 mixed abdomen 4 ? 812 570 27.58621 40.14778 54.43350 91.37931 24 8 2.9556650 812 FALSE FALSE
donor5_recovery.TTTGGTTGTACGTGAG-1 donor5_recovery TTTGGTTGTACGTGAG-1 5 mixed abdomen 4 ? 755 494 30.99338 44.90066 61.05960 100.00000 34 9 4.5033113 755 FALSE FALSE
donor5_recovery.TTTGGTTGTCCTACAA-1 donor5_recovery TTTGGTTGTCCTACAA-1 5 mixed abdomen 4 ? 835 625 24.07186 36.04790 49.10180 85.02994 27 6 3.2335329 835 FALSE FALSE
donor5_recovery.TTTGGTTGTGACTCTA-1 donor5_recovery TTTGGTTGTGACTCTA-1 5 mixed abdomen 4 ? 938 572 29.63753 43.39019 60.34115 92.32409 2 2 0.2132196 938 FALSE FALSE
donor5_recovery.TTTGGTTTCGACCAAT-1 donor5_recovery TTTGGTTTCGACCAAT-1 5 mixed abdomen 4 ? 1328 670 34.33735 48.34337 64.30723 87.19880 67 10 5.0451807 1328 FALSE FALSE
donor5_recovery.TTTGTTGGTCCTACGG-1 donor5_recovery TTTGTTGGTCCTACGG-1 5 mixed abdomen 4 ? 795 552 28.30189 41.63522 55.72327 93.45912 44 12 5.5345912 795 FALSE FALSE
donor5_recovery.TTTGTTGGTCGCAGTC-1 donor5_recovery TTTGTTGGTCGCAGTC-1 5 mixed abdomen 4 ? 1872 1250 16.18590 24.73291 37.01923 59.93590 66 14 3.5256410 1872 FALSE FALSE
donor5_recovery.TTTGTTGGTGGCGTAA-1 donor5_recovery TTTGTTGGTGGCGTAA-1 5 mixed abdomen 4 ? 1928 931 33.14315 46.21369 58.97303 77.64523 51 13 2.6452282 1928 FALSE FALSE
donor5_recovery.TTTGTTGTCGGCATTA-1 donor5_recovery TTTGTTGTCGGCATTA-1 5 mixed abdomen 4 ? 2091 1206 21.95122 32.56815 45.28934 66.23625 53 14 2.5346724 2091 FALSE FALSE
with(cd_df, table(outlier_sum, outlier_detected))
           outlier_detected
outlier_sum FALSE  TRUE
      FALSE 22274    12
      TRUE     12    39
options(repr.plot.width=20, repr.plot.height=20)


ggplot(cd_df, aes(sum, detected, color=outlier_sum, shape=outlier_detected)) +
    geom_point(size=2) +
    scale_x_log10() +
    scale_y_log10() +
    facet_wrap(~Sample)

options(repr.plot.width=20, repr.plot.height=20)

ggplot(cd_df, aes(sum, subsets_Mito_percent, color=outlier_sum, shape=outlier_detected)) +
    geom_point(size=2) +
    scale_x_log10() +
    facet_wrap(~Sample)

colData(sce) <- cd_df %>% DataFrame
colData(sce) 
DataFrame with 22337 rows and 19 columns
                                            Sample            Barcode     donor
                                       <character>        <character> <numeric>
donor1_fat.AAAGAACCACATACGT-1           donor1_fat AAAGAACCACATACGT-1         1
donor1_fat.AAAGGTAGTCCGGTCA-1           donor1_fat AAAGGTAGTCCGGTCA-1         1
donor1_fat.AAAGGTATCTCTCTTC-1           donor1_fat AAAGGTATCTCTCTTC-1         1
donor1_fat.AACCACACAGTGGCTC-1           donor1_fat AACCACACAGTGGCTC-1         1
donor1_fat.AACGGGATCTGCTGAA-1           donor1_fat AACGGGATCTGCTGAA-1         1
...                                            ...                ...       ...
donor5_recovery.TTTGGTTTCGACCAAT-1 donor5_recovery TTTGGTTTCGACCAAT-1         5
donor5_recovery.TTTGTTGGTCCTACGG-1 donor5_recovery TTTGTTGGTCCTACGG-1         5
donor5_recovery.TTTGTTGGTCGCAGTC-1 donor5_recovery TTTGTTGGTCGCAGTC-1         5
donor5_recovery.TTTGTTGGTGGCGTAA-1 donor5_recovery TTTGTTGGTGGCGTAA-1         5
donor5_recovery.TTTGTTGTCGGCATTA-1 donor5_recovery TTTGTTGTCGGCATTA-1         5
                                        tissue tissue_origin sequencing_run
                                   <character>   <character>      <numeric>
donor1_fat.AAAGAACCACATACGT-1              fat       abdomen              1
donor1_fat.AAAGGTAGTCCGGTCA-1              fat       abdomen              1
donor1_fat.AAAGGTATCTCTCTTC-1              fat       abdomen              1
donor1_fat.AACCACACAGTGGCTC-1              fat       abdomen              1
donor1_fat.AACGGGATCTGCTGAA-1              fat       abdomen              1
...                                        ...           ...            ...
donor5_recovery.TTTGGTTTCGACCAAT-1       mixed       abdomen              4
donor5_recovery.TTTGTTGGTCCTACGG-1       mixed       abdomen              4
donor5_recovery.TTTGTTGGTCGCAGTC-1       mixed       abdomen              4
donor5_recovery.TTTGTTGGTGGCGTAA-1       mixed       abdomen              4
donor5_recovery.TTTGTTGTCGGCATTA-1       mixed       abdomen              4
                                           sex       sum  detected
                                   <character> <numeric> <integer>
donor1_fat.AAAGAACCACATACGT-1                F      4276      1721
donor1_fat.AAAGGTAGTCCGGTCA-1                F      3023      1084
donor1_fat.AAAGGTATCTCTCTTC-1                F      3892      1422
donor1_fat.AACCACACAGTGGCTC-1                F      7722      2633
donor1_fat.AACGGGATCTGCTGAA-1                F      3256      1284
...                                        ...       ...       ...
donor5_recovery.TTTGGTTTCGACCAAT-1           ?      1328       670
donor5_recovery.TTTGTTGGTCCTACGG-1           ?       795       552
donor5_recovery.TTTGTTGGTCGCAGTC-1           ?      1872      1250
donor5_recovery.TTTGTTGGTGGCGTAA-1           ?      1928       931
donor5_recovery.TTTGTTGTCGGCATTA-1           ?      2091      1206
                                   percent.top_50 percent.top_100
                                        <numeric>       <numeric>
donor1_fat.AAAGAACCACATACGT-1             33.8868         42.7736
donor1_fat.AAAGGTAGTCCGGTCA-1             39.6626         52.9937
donor1_fat.AAAGGTATCTCTCTTC-1             34.1213         46.5570
donor1_fat.AACCACACAGTGGCTC-1             26.8972         38.1248
donor1_fat.AACGGGATCTGCTGAA-1             34.3366         46.8059
...                                           ...             ...
donor5_recovery.TTTGGTTTCGACCAAT-1        34.3373         48.3434
donor5_recovery.TTTGTTGGTCCTACGG-1        28.3019         41.6352
donor5_recovery.TTTGTTGGTCGCAGTC-1        16.1859         24.7329
donor5_recovery.TTTGTTGGTGGCGTAA-1        33.1432         46.2137
donor5_recovery.TTTGTTGTCGGCATTA-1        21.9512         32.5681
                                   percent.top_200 percent.top_500
                                         <numeric>       <numeric>
donor1_fat.AAAGAACCACATACGT-1              52.9935         69.3171
donor1_fat.AAAGGTAGTCCGGTCA-1              65.0017         80.6814
donor1_fat.AAAGGTATCTCTCTTC-1              58.3505         75.9250
donor1_fat.AACCACACAGTGGCTC-1              48.6791         64.1285
donor1_fat.AACGGGATCTGCTGAA-1              59.0602         75.9214
...                                            ...             ...
donor5_recovery.TTTGGTTTCGACCAAT-1         64.3072         87.1988
donor5_recovery.TTTGTTGGTCCTACGG-1         55.7233         93.4591
donor5_recovery.TTTGTTGGTCGCAGTC-1         37.0192         59.9359
donor5_recovery.TTTGTTGGTGGCGTAA-1         58.9730         77.6452
donor5_recovery.TTTGTTGTCGGCATTA-1         45.2893         66.2363
                                   subsets_Mito_sum subsets_Mito_detected
                                          <numeric>             <integer>
donor1_fat.AAAGAACCACATACGT-1                   752                    16
donor1_fat.AAAGGTAGTCCGGTCA-1                    52                    12
donor1_fat.AAAGGTATCTCTCTTC-1                    48                    12
donor1_fat.AACCACACAGTGGCTC-1                   103                    13
donor1_fat.AACGGGATCTGCTGAA-1                   123                    11
...                                             ...                   ...
donor5_recovery.TTTGGTTTCGACCAAT-1               67                    10
donor5_recovery.TTTGTTGGTCCTACGG-1               44                    12
donor5_recovery.TTTGTTGGTCGCAGTC-1               66                    14
donor5_recovery.TTTGTTGGTGGCGTAA-1               51                    13
donor5_recovery.TTTGTTGTCGGCATTA-1               53                    14
                                   subsets_Mito_percent     total
                                              <numeric> <numeric>
donor1_fat.AAAGAACCACATACGT-1                  17.58653      4276
donor1_fat.AAAGGTAGTCCGGTCA-1                   1.72015      3023
donor1_fat.AAAGGTATCTCTCTTC-1                   1.23330      3892
donor1_fat.AACCACACAGTGGCTC-1                   1.33385      7722
donor1_fat.AACGGGATCTGCTGAA-1                   3.77764      3256
...                                                 ...       ...
donor5_recovery.TTTGGTTTCGACCAAT-1              5.04518      1328
donor5_recovery.TTTGTTGGTCCTACGG-1              5.53459       795
donor5_recovery.TTTGTTGGTCGCAGTC-1              3.52564      1872
donor5_recovery.TTTGTTGGTGGCGTAA-1              2.64523      1928
donor5_recovery.TTTGTTGTCGGCATTA-1              2.53467      2091
                                        outlier_sum outlier_detected
                                   <outlier.filter> <outlier.filter>
donor1_fat.AAAGAACCACATACGT-1                 FALSE            FALSE
donor1_fat.AAAGGTAGTCCGGTCA-1                 FALSE            FALSE
donor1_fat.AAAGGTATCTCTCTTC-1                 FALSE            FALSE
donor1_fat.AACCACACAGTGGCTC-1                 FALSE            FALSE
donor1_fat.AACGGGATCTGCTGAA-1                 FALSE            FALSE
...                                             ...              ...
donor5_recovery.TTTGGTTTCGACCAAT-1            FALSE            FALSE
donor5_recovery.TTTGTTGGTCCTACGG-1            FALSE            FALSE
donor5_recovery.TTTGTTGGTCGCAGTC-1            FALSE            FALSE
donor5_recovery.TTTGTTGGTGGCGTAA-1            FALSE            FALSE
donor5_recovery.TTTGTTGTCGGCATTA-1            FALSE            FALSE
sce <- sce[,!colData(sce)$outlier_detected]
sce <- sce[,!colData(sce)$outlier_sum]
sce
class: SingleCellExperiment 
dim: 18627 22274 
metadata(0):
assays(1): counts
rownames(18627): ENSG00000187634.SAMD11 ENSG00000188976.NOC2L ...
  ENSG00000278817.ENSG00000278817 ENSG00000277196.ENSG00000277196
rowData names(3): ID Symbol Type
colnames(22274): donor1_fat.AAAGAACCACATACGT-1
  donor1_fat.AAAGGTAGTCCGGTCA-1 ... donor5_recovery.TTTGTTGGTGGCGTAA-1
  donor5_recovery.TTTGTTGTCGGCATTA-1
colData names(19): Sample Barcode ... outlier_sum outlier_detected
reducedDimNames(0):
mainExpName: NULL
altExpNames(0):
saveRDS(sce, file="../output/0.1-sce-after-filtering.rds")
markers <- googlesheets4::read_sheet(md_sheet, sheet = "markers")
markers
✔ Reading from halin-bauer-hLECs-metadata.

✔ Range ''markers''.
A tibble: 37 × 5
gene_name subpopulation subpopshort direction known
<chr> <chr> <chr> <chr> <chr>
ENSG00000117707.PROX1 LECs LEC positive yes
ENSG00000162493.PDPN LECs LEC positive yes
ENSG00000133800.LYVE1 capillary-LEC cpLEC positive yes
ENSG00000137077.CCL21 capillary-LEC cpLEC positive yes
ENSG00000189056.RELN capillary-LEC cpLEC positive yes
ENSG00000129048.ACKR4 capillary-LEC cpLEC negative yes
ENSG00000108691.CCL2 capillary-LEC cpLEC negative no
ENSG00000081041.CXCL2 capillary-LEC cpLEC negative no
ENSG00000133800.LYVE1 precollector-LEC pcLEC positive yes
ENSG00000137077.CCL21 precollector-LEC pcLEC positive yes
ENSG00000189056.RELN precollector-LEC pcLEC positive yes
ENSG00000129048.ACKR4 precollector-LEC pcLEC negative yes
ENSG00000108691.CCL2 precollector-LEC pcLEC positive no
ENSG00000081041.CXCL2 precollector-LEC pcLEC positive no
ENSG00000133800.LYVE1 collector-LEC clLEC negative yes
ENSG00000137077.CCL21 collector-LEC clLEC negative yes
ENSG00000189056.RELN collector-LEC clLEC negative yes
ENSG00000129048.ACKR4 collector-LEC clLEC positive yes
ENSG00000108691.CCL2 collector-LEC clLEC positive no
ENSG00000081041.CXCL2 collector-LEC clLEC positive no
ENSG00000137077.CCL21 valve-LEC vLEC negative yes
ENSG00000133800.LYVE1 valve-LEC vLEC negative yes
ENSG00000013297.CLDN11 valve-LEC vLEC positive yes
ENSG00000272398.CD24 valve-LEC vLEC positive no
ENSG00000149564.ESAM valve-LEC vLEC positive no
ENSG00000170017.ALCAM valve-LEC vLEC positive no
ENSG00000108821.COL1A1 contaminant-fibroblasts-smooth-muscle CONT-FSM positive yes
ENSG00000113721.PDGFRB contaminant-fibroblasts-smooth-muscle CONT-FSM positive yes
ENSG00000107796.ACTA2 contaminant-fibroblasts-smooth-muscle CONT-FSM positive yes
ENSG00000186081.KRT5 contaminant-keratinocytes CONT-K positive yes
ENSG00000186847.KRT14 contaminant-keratinocytes CONT-K positive yes
ENSG00000081237.PTPRC contaminant-leukocytes CONT-L positive yes
ENSG00000102755.FLT1 contaminant-blood-endothelial-cells CONT-BEC positive yes
ENSG00000154721.JAM2 contaminant-blood-endothelial-cells CONT-BEC positive yes
ENSG00000090339.ICAM1 LECs LEC positive ?
ENSG00000103335.PIEZO1 LECs LEC positive ?
ENSG00000154864.PIEZO2 LECs LEC positive ?
sce <- logNormCounts(sce)
sce
class: SingleCellExperiment 
dim: 18627 22274 
metadata(0):
assays(2): counts logcounts
rownames(18627): ENSG00000187634.SAMD11 ENSG00000188976.NOC2L ...
  ENSG00000278817.ENSG00000278817 ENSG00000277196.ENSG00000277196
rowData names(3): ID Symbol Type
colnames(22274): donor1_fat.AAAGAACCACATACGT-1
  donor1_fat.AAAGGTAGTCCGGTCA-1 ... donor5_recovery.TTTGTTGGTGGCGTAA-1
  donor5_recovery.TTTGTTGTCGGCATTA-1
colData names(20): Sample Barcode ... outlier_detected sizeFactor
reducedDimNames(0):
mainExpName: NULL
altExpNames(0):
mgv <- modelGeneVar(sce, block=sce$Sample)
per_block <- mgv$per.block
mgv$mgv$per.block <- NULL
per_block
DataFrame with 18627 rows and 12 columns
                                donor1_fat
                               <DataFrame>
1        0.0000000:0.0000000:0.0000000:...
2        0.0447544:0.0483622:0.0471062:...
3        0.0299111:0.0420068:0.0315344:...
4        0.0000000:0.0000000:0.0000000:...
5        0.0000000:0.0000000:0.0000000:...
...                                    ...
18623 0.00527968:0.00440426:0.00557591:...
18624 0.00000000:0.00000000:0.00000000:...
18625 0.00000000:0.00000000:0.00000000:...
18626 0.01379355:0.01574627:0.01456116:...
18627 0.00000000:0.00000000:0.00000000:...
                                  donor1_skin
                                  <DataFrame>
1     0.000192091:0.000140327:0.000210392:...
2     0.030096853:0.034786115:0.032963547:...
3     0.007230149:0.009100637:0.007918963:...
4     0.000673060:0.000577614:0.000737182:...
5     0.000000000:0.000000000:0.000000000:...
...                                       ...
18623 0.005793431:0.006536338:0.006345371:...
18624 0.000655845:0.000823243:0.000718328:...
18625 0.000000000:0.000000000:0.000000000:...
18626 0.015571469:0.017150311:0.017054905:...
18627 0.000000000:0.000000000:0.000000000:...
                                   donor2_fat
                                  <DataFrame>
1     0.000257818:9.52261e-05:0.000231155:...
2     0.030989651:2.27018e-02:0.027517226:...
3     0.000541784:4.51619e-04:0.000485743:...
4     0.001016535:7.51721e-04:0.000911335:...
5     0.000000000:0.00000e+00:0.000000000:...
...                                       ...
18623  0.006846574:0.00432770:0.006130807:...
18624  0.063328584:0.05779895:0.055368734:...
18625  0.000000000:0.00000000:0.000000000:...
18626  0.018603745:0.01511799:0.016598744:...
18627  0.000612517:0.00105725:0.000549155:...
                                   donor3_fat
                                  <DataFrame>
1     0.005251594:0.002826777:0.002720376:...
2     0.058227092:0.025883220:0.030161476:...
3     0.002911593:0.001252882:0.001508233:...
4     0.000463204:0.000109945:0.000239944:...
5     0.000768523:0.000603030:0.000398102:...
...                                       ...
18623  0.01701294:0.007165761:0.008812857:...
18624  0.04656016:0.019818419:0.024118293:...
18625  0.00047452:0.000119722:0.000245806:...
18626  0.02401902:0.009052763:0.012442053:...
18627  0.00000000:0.000000000:0.000000000:...
                                  donor3_skin
                                  <DataFrame>
1     0.000000000:0.000000000:0.000000000:...
2     0.077795605:0.048279909:0.058675308:...
3     0.004722309:0.005066520:0.003738193:...
4     0.000962391:0.000527005:0.000763779:...
5     0.000000000:0.000000000:0.000000000:...
...                                       ...
18623    0.03084809:0.02389855:0.02399428:...
18624    0.05316327:0.03602979:0.04074557:...
18625    0.00000000:0.00000000:0.00000000:...
18626    0.00585365:0.00409068:0.00463021:...
18627    0.00000000:0.00000000:0.00000000:...
                                  donor4_fat
                                 <DataFrame>
1     0.01069955:3.53034e-03:0.004835728:...
2     0.09387548:4.16551e-02:0.042425119:...
3     0.01530288:6.05392e-03:0.006916231:...
4     0.00104185:9.55201e-05:0.000470872:...
5     0.00000000:0.00000e+00:0.000000000:...
...                                      ...
18623    0.0202734:0.00534214:0.00916268:...
18624    0.0624849:0.02416214:0.02823992:...
18625    0.0000000:0.00000000:0.00000000:...
18626    0.0377530:0.01659354:0.01706262:...
18627    0.0000000:0.00000000:0.00000000:...
                                  donor4_skin
                                  <DataFrame>
1     0.001684255:0.000984743:0.000795111:...
2     0.099895592:0.041682785:0.047077413:...
3     0.018399329:0.011478903:0.008685330:...
4     0.002311079:0.000617455:0.001091023:...
5     0.000486684:0.000148986:0.000229756:...
...                                       ...
18623  0.03531342:0.017654658:0.016666491:...
18624  0.08061596:0.029509405:0.038012706:...
18625  0.00000000:0.000000000:0.000000000:...
18626  0.00619706:0.002728810:0.002925505:...
18627  0.00156129:0.000797139:0.000737061:...
                              donor5_recovery
                                  <DataFrame>
1     0.002386149:0.003595803:0.004200088:...
2     0.036177813:0.066393947:0.063676351:...
3     0.005542531:0.010860622:0.009755932:...
4     0.000470654:0.000546747:0.000828443:...
5     0.000000000:0.000000000:0.000000000:...
...                                       ...
18623    0.00385830:0.00629160:0.00679135:...
18624    0.00000000:0.00000000:0.00000000:...
18625    0.00000000:0.00000000:0.00000000:...
18626    0.00218717:0.00460785:0.00384985:...
18627    0.00000000:0.00000000:0.00000000:...
                                donor6_fat                          donor6_skin
                               <DataFrame>                          <DataFrame>
1     0.00000000:0.00000000:0.00000000:... 0.00116394:0.00130381:0.00192853:...
2     0.02855809:0.04743540:0.04610573:... 0.03484125:0.06236383:0.05771629:...
3     0.00443248:0.00746152:0.00715685:... 0.00171647:0.00298939:0.00284401:...
4     0.00105621:0.00222445:0.00170539:... 0.00000000:0.00000000:0.00000000:...
5     0.00000000:0.00000000:0.00000000:... 0.00000000:0.00000000:0.00000000:...
...                                    ...                                  ...
18623  0.00672034:0.0142582:0.01085087:...  0.01009389:0.0186100:0.01672428:...
18624  0.00000000:0.0000000:0.00000000:...  0.00000000:0.0000000:0.00000000:...
18625  0.00000000:0.0000000:0.00000000:...  0.00000000:0.0000000:0.00000000:...
18626  0.00103449:0.0021339:0.00167032:...  0.00490375:0.0084261:0.00812499:...
18627  0.00000000:0.0000000:0.00000000:...  0.00000000:0.0000000:0.00000000:...
                                  donor7_fat
                                 <DataFrame>
1       0.00162012:0.00274062:0.00245109:...
2       0.03856859:0.06085669:0.05814055:...
3       0.01021691:0.01666630:0.01544960:...
4       0.00108433:0.00200704:0.00164052:...
5       0.00000000:0.00000000:0.00000000:...
...                                      ...
18623 0.012511800:0.017865490:0.01891639:...
18624 0.000000000:0.000000000:0.00000000:...
18625 0.000000000:0.000000000:0.00000000:...
18626 0.000761895:0.000990887:0.00115271:...
18627 0.000000000:0.000000000:0.00000000:...
                                  donor7_skin
                                  <DataFrame>
1     0.000377092:0.000412090:0.000554036:...
2     0.029380808:0.047142481:0.043156883:...
3     0.004676678:0.007048741:0.006871096:...
4     0.002052253:0.002850248:0.003015239:...
5     0.000457449:0.000606435:0.000672101:...
...                                       ...
18623    0.00951234:0.01478812:0.01397550:...
18624    0.00000000:0.00000000:0.00000000:...
18625    0.00000000:0.00000000:0.00000000:...
18626    0.00246677:0.00309163:0.00362426:...
18627    0.00000000:0.00000000:0.00000000:...
mgv <- mgv %>% as.data.frame %>% rownames_to_column("gene_name") %>% left_join(markers, multiple = "first")
mgv
Joining with `by = join_by(gene_name)`
A data.frame: 18627 × 83
gene_name mean total tech bio p.value FDR per.block.donor1_fat.mean per.block.donor1_fat.total per.block.donor1_fat.tech per.block.donor7_skin.mean per.block.donor7_skin.total per.block.donor7_skin.tech per.block.donor7_skin.bio per.block.donor7_skin.p.value per.block.donor7_skin.FDR subpopulation subpopshort direction known
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <chr> <chr> <chr> <chr>
ENSG00000187634.SAMD11 0.0019693835 0.0013024782 0.0014938755 -1.913973e-04 8.737032e-01 1.000000e+00 0.000000000 0.000000000 0.000000000 0.0003770917 0.0004120903 0.0005540363 -1.419460e-04 9.994747e-01 1.000000e+00 NA NA NA NA
ENSG00000188976.NOC2L 0.0502634315 0.0456286194 0.0462268405 -5.982211e-04 5.299364e-01 9.355400e-01 0.044754353 0.048362162 0.047106190 0.0293808083 0.0471424812 0.0431568827 3.985598e-03 1.187842e-01 5.326614e-01 NA NA NA NA
ENSG00000187961.KLHL17 0.0088003534 0.0100364902 0.0085720454 1.464445e-03 1.356136e-02 5.041921e-02 0.029911128 0.042006834 0.031534370 0.0046766780 0.0070487413 0.0068710959 1.776454e-04 3.704551e-01 7.408704e-01 NA NA NA NA
ENSG00000187583.PLEKHN1 0.0009276301 0.0008589782 0.0009503105 -9.133234e-05 7.086989e-02 2.073134e-01 0.000000000 0.000000000 0.000000000 0.0020522533 0.0028502483 0.0030152388 -1.649905e-04 7.579746e-01 8.954704e-01 NA NA NA NA
ENSG00000187642.PERM1 0.0001427214 0.0001132043 0.0001083299 4.874395e-06 1.791375e-01 4.312149e-01 0.000000000 0.000000000 0.000000000 0.0004574494 0.0006064354 0.0006721007 -6.566524e-05 8.942605e-01 9.949778e-01 NA NA NA NA
ENSG00000188290.HES4 0.4317683304 0.4744427877 0.4318170816 4.262571e-02 1.769217e-02 6.342516e-02 0.579772219 0.530487385 0.524572804 0.5032418551 0.7325884217 0.6744572788 5.813114e-02 1.351696e-01 5.618877e-01 NA NA NA NA
ENSG00000187608.ISG15 0.1907224467 0.2125479814 0.1605618632 5.198612e-02 8.298437e-13 1.131179e-11 0.116807731 0.111024323 0.121563029 0.1162945309 0.1917556701 0.1700318967 2.172377e-02 5.113300e-02 3.398987e-01 NA NA NA NA
ENSG00000188157.AGRN 0.1114768158 0.1148564437 0.1092542055 5.602238e-03 1.795969e-01 4.320410e-01 0.138418928 0.130595390 0.143518295 0.1001736813 0.1677008352 0.1467709611 2.092987e-02 3.409516e-02 2.628374e-01 NA NA NA NA
ENSG00000131591.C1orf159 0.0313450869 0.0341074411 0.0326217764 1.485665e-03 1.950322e-01 4.590749e-01 0.014560216 0.016643509 0.015369731 0.0290359040 0.0439328414 0.0426504987 1.282343e-03 3.502968e-01 7.360048e-01 NA NA NA NA
ENSG00000162571.TTLL10 0.0008546147 0.0005900526 0.0005168317 7.322091e-05 1.540465e-10 1.746455e-09 0.000000000 0.000000000 0.000000000 0.0008199698 0.0019484717 0.0012047281 7.437436e-04 1.447307e-15 1.961519e-13 NA NA NA NA
ENSG00000186891.TNFRSF18 0.0058911157 0.0033663407 0.0034570205 -9.067979e-05 1.715891e-07 1.429371e-06 0.000000000 0.000000000 0.000000000 0.0006670706 0.0006459384 0.0009800834 -3.341450e-04 9.999935e-01 1.000000e+00 NA NA NA NA
ENSG00000186827.TNFRSF4 0.1043514102 0.1025507891 0.0915769314 1.097386e-02 4.067668e-02 1.298149e-01 0.118148494 0.138295830 0.122931497 0.0535097343 0.0819809698 0.0785558824 3.425087e-03 2.885551e-01 7.098456e-01 NA NA NA NA
ENSG00000078808.SDF4 0.2212428288 0.1731091994 0.1900223305 -1.691313e-02 9.752666e-01 1.000000e+00 0.125266097 0.109117598 0.130182344 0.1523546501 0.2205261063 0.2216055398 -1.079434e-03 5.248361e-01 7.857325e-01 NA NA NA NA
ENSG00000176022.B3GALT6 0.0331810618 0.0290155465 0.0298696351 -8.540886e-04 2.808728e-01 6.080890e-01 0.033773789 0.043187394 0.035592796 0.0172146779 0.0291051117 0.0252902950 3.814817e-03 2.685835e-02 2.274809e-01 NA NA NA NA
ENSG00000184163.C1QTNF12 0.0021494577 0.0015139299 0.0013974834 1.164465e-04 1.620399e-01 3.997888e-01 0.000000000 0.000000000 0.000000000 0.0000000000 0.0000000000 0.0000000000 0.000000e+00 NaN NaN NA NA NA NA
ENSG00000160087.UBE2J2 0.1039678327 0.0900077789 0.0929954030 -2.987624e-03 6.280412e-01 1.000000e+00 0.095448125 0.074176088 0.099676791 0.0682506326 0.1080415891 0.1001470086 7.894581e-03 1.566890e-01 5.931810e-01 NA NA NA NA
ENSG00000162572.SCNN1D 0.0039239679 0.0045575486 0.0040416201 5.159285e-04 4.918952e-08 4.365540e-07 0.000000000 0.000000000 0.000000000 0.0057684617 0.0101547219 0.0084751452 1.679577e-03 5.630535e-03 7.276488e-02 NA NA NA NA
ENSG00000131584.ACAP3 0.0229812853 0.0232988062 0.0211932916 2.105515e-03 1.937648e-05 1.234214e-04 0.011195668 0.019804193 0.011820538 0.0194500131 0.0379595830 0.0285735981 9.385985e-03 1.328671e-05 4.117809e-04 NA NA NA NA
ENSG00000169972.PUSL1 0.0148668264 0.0123331169 0.0130527191 -7.196022e-04 8.753588e-01 1.000000e+00 0.022273057 0.021196167 0.023497957 0.0099100098 0.0157438677 0.0145597274 1.184140e-03 1.491395e-01 5.811430e-01 NA NA NA NA
ENSG00000127054.INTS11 0.0863434745 0.0693228612 0.0735482434 -4.225382e-03 3.658966e-01 7.358698e-01 0.084655755 0.072026480 0.088577214 0.0394623773 0.0632514002 0.0579543345 5.297066e-03 1.212164e-01 5.363840e-01 NA NA NA NA
ENSG00000224051.CPTP 0.0437399735 0.0345153310 0.0355729713 -1.057640e-03 2.192897e-01 5.029921e-01 0.028106629 0.021103972 0.029637060 0.0200511600 0.0345908846 0.0294565347 5.134350e-03 1.290151e-02 1.357971e-01 NA NA NA NA
ENSG00000169962.TAS1R3 0.0004052785 0.0005136642 0.0004490183 6.464582e-05 6.063849e-10 6.566403e-09 0.000000000 0.000000000 0.000000000 0.0000000000 0.0000000000 0.0000000000 0.000000e+00 NaN NaN NA NA NA NA
ENSG00000107404.DVL1 0.0546596741 0.0559125190 0.0546148119 1.297707e-03 1.169168e-01 3.097954e-01 0.051992919 0.051285625 0.054674802 0.0494111753 0.0774444246 0.0725473686 4.897056e-03 1.939918e-01 6.394011e-01 NA NA NA NA
ENSG00000162576.MXRA8 0.0733304526 0.0816338793 0.0424210381 3.921284e-02 8.369574e-10 8.943419e-09 0.041612054 0.048939431 0.043815198 0.0070240558 0.0104407885 0.0103198435 1.209450e-04 4.404284e-01 7.639509e-01 NA NA NA NA
ENSG00000175756.AURKAIP1 0.2877332314 0.2267634099 0.2455746749 -1.881126e-02 9.404859e-01 1.000000e+00 0.358315318 0.322001177 0.351057560 0.1725839830 0.2569559693 0.2502336724 6.722297e-03 3.655864e-01 7.396080e-01 NA NA NA NA
ENSG00000221978.CCNL2 0.1554273129 0.1607440768 0.1474084468 1.333563e-02 5.406649e-02 1.654175e-01 0.143807887 0.203728633 0.148957683 0.1123157102 0.1831533488 0.1643020608 1.885129e-02 7.113931e-02 4.110676e-01 NA NA NA NA
ENSG00000242485.MRPL20 0.4041161319 0.3611990674 0.3758276205 -1.462855e-02 9.394156e-01 1.000000e+00 0.435379963 0.374452458 0.415710684 0.3693702802 0.5208705603 0.5140860481 6.784512e-03 4.329849e-01 7.621041e-01 NA NA NA NA
ENSG00000235098.ANKRD65 0.0075721639 0.0037111374 0.0045934832 -8.823459e-04 7.679673e-01 1.000000e+00 0.005096231 0.004103508 0.005382204 0.0000000000 0.0000000000 0.0000000000 0.000000e+00 NaN NaN NA NA NA NA
ENSG00000205116.TMEM88B 0.0003453538 0.0001663211 0.0002435159 -7.719476e-05 9.989500e-01 1.000000e+00 0.000000000 0.000000000 0.000000000 0.0002774246 0.0002230429 0.0004076020 -1.845591e-04 1.000000e+00 1.000000e+00 NA NA NA NA
ENSG00000179403.VWA1 0.0201312569 0.0184182043 0.0144274781 3.990726e-03 9.560126e-06 6.380166e-05 0.011154903 0.007099697 0.011777524 0.0078463236 0.0130163670 0.0115278913 1.488476e-03 4.933709e-02 3.325438e-01 NA NA NA NA
ENSG00000182484.WASH6P 1.060511e-01 1.051630e-01 1.012401e-01 3.922887e-03 5.385302e-02 1.649027e-01 0.089568204 0.108006196 0.093636322 0.0983430607 0.1563313631 0.1441048272 1.222654e-02 1.389424e-01 0.567558120 NA NA NA NA
ENSG00000129824.RPS4Y1 2.235694e-01 2.838755e-01 2.897254e-01 -5.849912e-03 1.472026e-03 6.816781e-03 0.002959566 0.001383926 0.003125851 0.0170548138 0.0324826172 0.0250554751 7.427142e-03 7.501188e-05 0.001922062 NA NA NA NA
ENSG00000067646.ZFY 3.808236e-02 4.753073e-02 4.488257e-02 2.648161e-03 5.600530e-03 2.288586e-02 0.062956984 0.069570622 0.066102981 0.0111761192 0.0168789885 0.0164197643 4.592242e-04 3.602910e-01 0.738736203 NA NA NA NA
ENSG00000099715.PCDH11Y 8.276551e-03 1.038031e-02 8.746170e-03 1.634137e-03 2.348474e-03 1.046374e-02 0.018789257 0.035260608 0.019828012 0.0056077484 0.0089139084 0.0082390261 6.748823e-04 1.474144e-01 0.578190854 NA NA NA NA
ENSG00000099721.AMELY 3.799039e-04 3.942317e-04 3.744746e-04 1.975718e-05 2.299880e-04 1.239469e-03 0.000000000 0.000000000 0.000000000 0.0000000000 0.0000000000 0.0000000000 0.000000e+00 NaN NaN NA NA NA NA
ENSG00000092377.TBL1Y 6.918795e-04 7.768121e-04 8.532257e-04 -7.641360e-05 4.001967e-01 7.810283e-01 0.000000000 0.000000000 0.000000000 0.0009483741 0.0013166584 0.0013933841 -7.672566e-05 7.593519e-01 0.896580882 NA NA NA NA
ENSG00000114374.USP9Y 3.812034e-02 6.343246e-02 6.151179e-02 1.920676e-03 8.991925e-01 1.000000e+00 0.004961967 0.003890137 0.005240431 0.0014691287 0.0021249447 0.0021584939 -3.354920e-05 5.787820e-01 0.804795343 NA NA NA NA
ENSG00000067048.DDX3Y 9.987608e-02 1.538440e-01 1.521439e-01 1.700035e-03 3.401029e-04 1.767338e-03 0.000000000 0.000000000 0.000000000 0.0067399916 0.0129023438 0.0099025033 2.999841e-03 5.346960e-05 0.001428091 NA NA NA NA
ENSG00000183878.UTY 6.276576e-02 1.035719e-01 9.944009e-02 4.131834e-03 2.371132e-05 1.491927e-04 0.000000000 0.000000000 0.000000000 0.0037955497 0.0055075356 0.0055765314 -6.899581e-05 5.628633e-01 0.797561478 NA NA NA NA
ENSG00000154620.TMSB4Y 3.161534e-03 5.812091e-03 5.249932e-03 5.621585e-04 3.716597e-03 1.584561e-02 0.000000000 0.000000000 0.000000000 0.0000000000 0.0000000000 0.0000000000 0.000000e+00 NaN NaN NA NA NA NA
ENSG00000165246.NLGN4Y 2.889787e-02 4.648592e-02 4.439543e-02 2.090492e-03 2.261591e-05 1.426383e-04 0.007101396 0.007967912 0.007499287 0.0059726097 0.0094529158 0.0087750778 6.778379e-04 1.616008e-01 0.599288583 NA NA NA NA
ENSG00000172468.HSFY1 1.774793e-04 1.349566e-04 1.911604e-04 -5.620376e-05 9.754492e-01 1.000000e+00 0.000000000 0.000000000 0.000000000 0.0002446283 0.0001734250 0.0003594165 -1.859914e-04 1.000000e+00 1.000000000 NA NA NA NA
ENSG00000169953.HSFY2 2.195080e-04 2.132608e-04 2.215071e-04 -8.246239e-06 6.838196e-01 1.000000e+00 0.000000000 0.000000000 0.000000000 0.0002892259 0.0002424224 0.0004249408 -1.825184e-04 1.000000e+00 1.000000000 NA NA NA NA
ENSG00000012817.KDM5D 1.168414e-02 2.019782e-02 1.928814e-02 9.096875e-04 2.116818e-03 9.515955e-03 0.000000000 0.000000000 0.000000000 0.0000000000 0.0000000000 0.0000000000 0.000000e+00 NaN NaN NA NA NA NA
ENSG00000198692.EIF1AY 4.603123e-02 7.533155e-02 7.455884e-02 7.727028e-04 9.981512e-02 2.736453e-01 0.000000000 0.000000000 0.000000000 0.0009624456 0.0009776989 0.0014140584 -4.363595e-04 9.999604e-01 1.000000000 NA NA NA NA
ENSG00000280969.RPS4Y2 3.188270e-05 2.432296e-05 5.147908e-05 -2.715612e-05 1.000000e+00 1.000000e+00 0.000000000 0.000000000 0.000000000 0.0000000000 0.0000000000 0.0000000000 0.000000e+00 NaN NaN NA NA NA NA
ENSG00000169807.PRY2 6.112707e-05 5.399550e-05 8.281698e-05 -2.882148e-05 8.976356e-01 1.000000e+00 0.000000000 0.000000000 0.000000000 0.0000000000 0.0000000000 0.0000000000 0.000000e+00 NaN NaN NA NA NA NA
ENSG00000187191.DAZ3 2.244223e-05 1.703156e-05 2.012135e-05 -3.089796e-06 8.264456e-01 1.000000e+00 0.000000000 0.000000000 0.000000000 0.0000000000 0.0000000000 0.0000000000 0.000000e+00 NaN NaN NA NA NA NA
ENSG00000205916.DAZ4 1.205705e-04 2.539327e-04 1.831278e-04 7.080490e-05 7.884693e-07 6.082992e-06 0.000000000 0.000000000 0.000000000 0.0000000000 0.0000000000 0.0000000000 0.000000e+00 NaN NaN NA NA NA NA
ENSG00000278704.ENSG00000278704 6.738617e-03 7.672991e-03 7.311764e-03 3.612269e-04 3.103076e-01 6.540698e-01 0.007461762 0.008797108 0.007879719 0.0070398383 0.0101438386 0.0103430307 -1.991921e-04 5.972746e-01 0.811804880 NA NA NA NA
ENSG00000277400.ENSG00000277400 3.346039e-03 3.604205e-03 3.321011e-03 2.831942e-04 6.867569e-01 1.000000e+00 0.009749444 0.015018162 0.010294400 0.0003640715 0.0003841243 0.0005349066 -1.507823e-04 9.998439e-01 1.000000000 NA NA NA NA
ENSG00000274847.MAFIP 2.747836e-02 3.523302e-02 3.322526e-02 2.007761e-03 1.097189e-01 2.950113e-01 0.045624753 0.054548175 0.048017210 0.0266886287 0.0400806811 0.0392040406 8.766406e-04 3.874484e-01 0.746886890 NA NA NA NA
ENSG00000276256.ENSG00000276256 1.456334e-01 1.587725e-01 1.663422e-01 -7.569715e-03 9.946371e-01 1.000000e+00 0.022176195 0.016113771 0.023395954 0.2252880825 0.3118314572 0.3236612085 -1.182975e-02 6.799064e-01 0.849895931 NA NA NA NA
ENSG00000278384.ENSG00000278384 8.811104e-03 1.040108e-02 1.052278e-02 -1.217001e-04 5.977625e-01 9.991189e-01 0.003029215 0.001449831 0.003199408 0.0087212489 0.0138309448 0.0128132871 1.017658e-03 1.548784e-01 0.590868757 NA NA NA NA
ENSG00000273748.ENSG00000273748 8.629686e-02 9.038450e-02 8.604669e-02 4.337806e-03 4.265947e-01 8.149871e-01 0.068696288 0.080482907 0.072066698 0.0876646108 0.1369676261 0.1285271979 8.440428e-03 2.004931e-01 0.646712417 NA NA NA NA
ENSG00000271254.ENSG00000271254 1.367201e-02 1.176190e-02 1.199557e-02 -2.336686e-04 1.048407e-01 2.843984e-01 0.005279681 0.004404255 0.005575911 0.0095123359 0.0147881250 0.0139754977 8.126273e-04 2.285474e-01 0.674288547 NA NA NA NA
ENSG00000276345.ENSG00000276345 2.556739e-02 1.401183e-02 1.560030e-02 -1.588466e-03 8.243541e-01 1.000000e+00 0.000000000 0.000000000 0.000000000 0.0000000000 0.0000000000 0.0000000000 0.000000e+00 NaN NaN NA NA NA NA
ENSG00000276017.ENSG00000276017 3.954335e-05 9.976801e-06 2.048383e-05 -1.050703e-05 9.858771e-01 1.000000e+00 0.000000000 0.000000000 0.000000000 0.0000000000 0.0000000000 0.0000000000 0.000000e+00 NaN NaN NA NA NA NA
ENSG00000278817.ENSG00000278817 1.109546e-02 8.310894e-03 8.641444e-03 -3.305493e-04 7.548021e-03 2.987236e-02 0.013793552 0.015746266 0.014561158 0.0024667705 0.0030916251 0.0036242592 -5.326341e-04 9.699135e-01 1.000000000 NA NA NA NA
ENSG00000277196.ENSG00000277196 1.811506e-04 1.545324e-04 1.071847e-04 4.734772e-05 5.457040e-08 4.813223e-07 0.000000000 0.000000000 0.000000000 0.0000000000 0.0000000000 0.0000000000 0.000000e+00 NaN NaN NA NA NA NA
options(repr.plot.width=10, repr.plot.height=10)

ggplot(mgv, aes(x=mean, y=bio, colour=subpopshort)) +
    geom_point(size=5)

ggplot(mgv, aes(x=subpopshort, y=bio, colour=subpopshort)) +
    geom_boxplot() +
    theme(axis.text.x = element_text(angle = 45, hjust=1))

nm <- names(per_block)
names(nm) <- nm
nm
donor1_fat
'donor1_fat'
donor1_skin
'donor1_skin'
donor2_fat
'donor2_fat'
donor3_fat
'donor3_fat'
donor3_skin
'donor3_skin'
donor4_fat
'donor4_fat'
donor4_skin
'donor4_skin'
donor5_recovery
'donor5_recovery'
donor6_fat
'donor6_fat'
donor6_skin
'donor6_skin'
donor7_fat
'donor7_fat'
donor7_skin
'donor7_skin'
options(repr.plot.width=6, repr.plot.height=6)

per_block_ggs <- lapply(nm, function(u) {
    z <- per_block[[u]] %>% as.data.frame %>% rownames_to_column("gene_name") %>%
        left_join(markers, multiple = "first")
    p <- ggplot(z, aes(x=subpopshort, y=-log10(FDR), colour=subpopshort)) +
        geom_boxplot() +
        theme(axis.text.x = element_text(angle = 45, hjust=1)) +
        ggtitle(u)
        print(p)
})
Joining with `by = join_by(gene_name)`
Warning message:
“Removed 5932 rows containing non-finite values (`stat_boxplot()`).”
Joining with `by = join_by(gene_name)`
Warning message:
“Removed 1984 rows containing non-finite values (`stat_boxplot()`).”
Joining with `by = join_by(gene_name)`
Warning message:
“Removed 2469 rows containing non-finite values (`stat_boxplot()`).”
Joining with `by = join_by(gene_name)`
Warning message:
“Removed 1555 rows containing non-finite values (`stat_boxplot()`).”
Joining with `by = join_by(gene_name)`
Warning message:
“Removed 3137 rows containing non-finite values (`stat_boxplot()`).”
Joining with `by = join_by(gene_name)`
Warning message:
“Removed 3732 rows containing non-finite values (`stat_boxplot()`).”
Joining with `by = join_by(gene_name)`
Warning message:
“Removed 2029 rows containing non-finite values (`stat_boxplot()`).”
Joining with `by = join_by(gene_name)`
Warning message:
“Removed 1699 rows containing non-finite values (`stat_boxplot()`).”
Joining with `by = join_by(gene_name)`
Warning message:
“Removed 2766 rows containing non-finite values (`stat_boxplot()`).”
Joining with `by = join_by(gene_name)`
Warning message:
“Removed 3088 rows containing non-finite values (`stat_boxplot()`).”
Joining with `by = join_by(gene_name)`
Warning message:
“Removed 2705 rows containing non-finite values (`stat_boxplot()`).”
Joining with `by = join_by(gene_name)`
Warning message:
“Removed 2229 rows containing non-finite values (`stat_boxplot()`).”

options(repr.plot.width=20, repr.plot.height=20)
ggarrange(plotlist = per_block_ggs, nrow = 3, ncol = 4)
Warning message:
“Removed 5932 rows containing non-finite values (`stat_boxplot()`).”
Warning message:
“Removed 1984 rows containing non-finite values (`stat_boxplot()`).”
Warning message:
“Removed 2469 rows containing non-finite values (`stat_boxplot()`).”
Warning message:
“Removed 1555 rows containing non-finite values (`stat_boxplot()`).”
Warning message:
“Removed 3137 rows containing non-finite values (`stat_boxplot()`).”
Warning message:
“Removed 3732 rows containing non-finite values (`stat_boxplot()`).”
Warning message:
“Removed 2029 rows containing non-finite values (`stat_boxplot()`).”
Warning message:
“Removed 1699 rows containing non-finite values (`stat_boxplot()`).”
Warning message:
“Removed 2766 rows containing non-finite values (`stat_boxplot()`).”
Warning message:
“Removed 3088 rows containing non-finite values (`stat_boxplot()`).”
Warning message:
“Removed 2705 rows containing non-finite values (`stat_boxplot()`).”
Warning message:
“Removed 2229 rows containing non-finite values (`stat_boxplot()`).”

uniq_markers <- unique(markers$gene_name)
uniq_markers
  1. 'ENSG00000117707.PROX1'
  2. 'ENSG00000162493.PDPN'
  3. 'ENSG00000133800.LYVE1'
  4. 'ENSG00000137077.CCL21'
  5. 'ENSG00000189056.RELN'
  6. 'ENSG00000129048.ACKR4'
  7. 'ENSG00000108691.CCL2'
  8. 'ENSG00000081041.CXCL2'
  9. 'ENSG00000013297.CLDN11'
  10. 'ENSG00000272398.CD24'
  11. 'ENSG00000149564.ESAM'
  12. 'ENSG00000170017.ALCAM'
  13. 'ENSG00000108821.COL1A1'
  14. 'ENSG00000113721.PDGFRB'
  15. 'ENSG00000107796.ACTA2'
  16. 'ENSG00000186081.KRT5'
  17. 'ENSG00000186847.KRT14'
  18. 'ENSG00000081237.PTPRC'
  19. 'ENSG00000102755.FLT1'
  20. 'ENSG00000154721.JAM2'
  21. 'ENSG00000090339.ICAM1'
  22. 'ENSG00000103335.PIEZO1'
  23. 'ENSG00000154864.PIEZO2'
per_block_umaps <- lapply(nm, function(u) {
    s <- sce[,sce$Sample==u]
    mgv <- modelGeneVar(s)
    hvgs <- mgv %>% as.data.frame %>% rownames_to_column("gene_name") %>%
        arrange(p.value) %>% head(500) %>% pull("gene_name")
    s <- runPCA(s, subset_row=hvgs)
    s <- runUMAP(s)
    exp <- as.matrix(logcounts(s)[uniq_markers,])
    data.frame(
        rowname = rownames(colData(s)), Sample = s$Sample,
        UMAP = reducedDim(s, "UMAP"), t(exp)
    ) %>% return()
})
Warning message in (function (A, nv = 5, nu = nv, maxit = 1000, work = nv + 7, reorth = TRUE, :
“You're computing too large a percentage of total singular values, use a standard svd instead.”
pdf("figures/umaps-markers-across-samples.pdf", width=10, height=8)
for(i in seq_len(length(uniq_markers))) {

  m <- markers %>% dplyr::filter(gene_name==uniq_markers[i]) %>% pull("subpopulation")

    print(ggplot(bind_rows(per_block_umaps), aes_string(x="UMAP.1", y="UMAP.2", colour = uniq_markers[i])) +
        geom_point() +
        scale_colour_gradient(low = "grey80", high = "blue") +
        facet_wrap(~Sample, scales = "free") +
        theme(legend.position="top") +
        ggtitle(m)
    )

}
dev.off()
Warning message:
“`aes_string()` was deprecated in ggplot2 3.0.0.
ℹ Please use tidy evaluation idioms with `aes()`.
ℹ See also `vignette("ggplot2-in-packages")` for more information.”
pdf: 2
ms <- bind_rows(per_block_umaps) %>% melt(id.vars = c("rowname", "Sample", "UMAP.1", "UMAP.2")) %>% split("Sample")
ms
$Sample =
A data.frame: 512302 × 6
rowname Sample UMAP.1 UMAP.2 variable value
<chr> <chr> <dbl> <dbl> <fct> <dbl>
1 donor1_fat.AAAGAACCACATACGT-1 donor1_fat -2.0484646 -1.1637262 ENSG00000117707.PROX1 1.1180317
2 donor1_fat.AAAGGTAGTCCGGTCA-1 donor1_fat 2.8242526 -1.0391492 ENSG00000117707.PROX1 0.0000000
3 donor1_fat.AAAGGTATCTCTCTTC-1 donor1_fat 0.9381566 0.6268698 ENSG00000117707.PROX1 1.0517659
4 donor1_fat.AACCACACAGTGGCTC-1 donor1_fat -0.6080225 -0.6364202 ENSG00000117707.PROX1 0.0000000
5 donor1_fat.AACGGGATCTGCTGAA-1 donor1_fat -1.0524757 -1.6120028 ENSG00000117707.PROX1 0.0000000
6 donor1_fat.AAGAACATCTGTGCAA-1 donor1_fat 1.5718066 0.7489513 ENSG00000117707.PROX1 2.0521759
7 donor1_fat.AAGCATCTCGATCCCT-1 donor1_fat 1.7909548 0.8797356 ENSG00000117707.PROX1 1.7869727
8 donor1_fat.AAGCGAGAGTATCCTG-1 donor1_fat -1.0558064 1.0522912 ENSG00000117707.PROX1 2.0656439
9 donor1_fat.AAGTTCGAGGCAGGTT-1 donor1_fat -1.0539844 -0.7540492 ENSG00000117707.PROX1 0.8052045
10 donor1_fat.AATCGACCAATTGCAC-1 donor1_fat -1.3530891 -1.1469282 ENSG00000117707.PROX1 2.2499633
11 donor1_fat.ACAAAGACAATGACCT-1 donor1_fat 1.8577221 0.7200912 ENSG00000117707.PROX1 0.7807234
12 donor1_fat.ACAAAGACACTAACGT-1 donor1_fat 1.6504609 -0.9285525 ENSG00000117707.PROX1 0.0000000
13 donor1_fat.ACAACCAAGGGCTTCC-1 donor1_fat -0.6354316 1.3237580 ENSG00000117707.PROX1 1.6079082
14 donor1_fat.ACAGGGATCTCATAGG-1 donor1_fat -0.1048098 0.9759096 ENSG00000117707.PROX1 2.5479505
15 donor1_fat.ACATTTCCACTCCACT-1 donor1_fat 2.0356176 -0.3929195 ENSG00000117707.PROX1 0.0000000
16 donor1_fat.ACATTTCTCGATGGAG-1 donor1_fat 0.4631455 1.2451497 ENSG00000117707.PROX1 0.0000000
17 donor1_fat.ACCCTTGTCACCATAG-1 donor1_fat 0.8288960 -0.8372497 ENSG00000117707.PROX1 0.9320313
18 donor1_fat.ACCTACCAGACCTCCG-1 donor1_fat 2.0905075 0.3380302 ENSG00000117707.PROX1 0.0000000
19 donor1_fat.ACGGAAGCACACCTAA-1 donor1_fat -3.9451654 0.2357324 ENSG00000117707.PROX1 2.1732948
20 donor1_fat.ACGTAGTTCCCGAAAT-1 donor1_fat 2.7871909 0.2391406 ENSG00000117707.PROX1 0.0000000
21 donor1_fat.ACGTTCCAGATGAATC-1 donor1_fat -3.5143168 0.4605635 ENSG00000117707.PROX1 0.0000000
22 donor1_fat.ACTCTCGAGCCGTTGC-1 donor1_fat -0.4711578 -0.9177226 ENSG00000117707.PROX1 0.0000000
23 donor1_fat.ACTTCCGTCAGGAACG-1 donor1_fat -4.0332029 0.4111551 ENSG00000117707.PROX1 2.6920234
24 donor1_fat.AGACACTCAGGCGATA-1 donor1_fat 2.8228720 -1.0549392 ENSG00000117707.PROX1 0.0000000
25 donor1_fat.AGACCATTCAAAGGTA-1 donor1_fat -0.2053631 0.8217293 ENSG00000117707.PROX1 1.4683445
26 donor1_fat.AGAGAGCCAAGCCCAC-1 donor1_fat 2.1387318 -0.4795322 ENSG00000117707.PROX1 0.0000000
27 donor1_fat.AGAGCCCAGTCTAGCT-1 donor1_fat -0.9772060 -1.4272784 ENSG00000117707.PROX1 0.9130940
28 donor1_fat.AGATCCAGTGCAGTGA-1 donor1_fat -1.1057518 -1.5379166 ENSG00000117707.PROX1 2.6862529
29 donor1_fat.AGATCGTGTTGCGTAT-1 donor1_fat 0.3803560 0.7960730 ENSG00000117707.PROX1 1.5156637
30 donor1_fat.AGGAGGTCAATACGAA-1 donor1_fat -0.5325592 -1.5191154 ENSG00000117707.PROX1 0.0000000
512273 donor7_skin.TTTATGCTCGTGTCAA-1 donor7_skin 0.44066022 -2.3981223 ENSG00000154864.PIEZO2 0.0000000
512274 donor7_skin.TTTCACAAGCGATGGT-1 donor7_skin -2.32789935 0.5459931 ENSG00000154864.PIEZO2 0.0000000
512275 donor7_skin.TTTCACAGTTGTAGCT-1 donor7_skin -0.63556482 -1.3933723 ENSG00000154864.PIEZO2 0.0000000
512276 donor7_skin.TTTCAGTTCAATCGGT-1 donor7_skin -0.62373890 -1.2646084 ENSG00000154864.PIEZO2 0.7371799
512277 donor7_skin.TTTCATGGTACAGTCT-1 donor7_skin 1.56131671 2.2107785 ENSG00000154864.PIEZO2 1.0879936
512278 donor7_skin.TTTCATGGTGGCTGCT-1 donor7_skin 1.27958320 1.3705374 ENSG00000154864.PIEZO2 0.0000000
512279 donor7_skin.TTTCATGTCCTTATGT-1 donor7_skin 1.51498244 -2.0856054 ENSG00000154864.PIEZO2 0.0000000
512280 donor7_skin.TTTCCTCAGCGGACAT-1 donor7_skin -1.95951611 0.0865000 ENSG00000154864.PIEZO2 0.0000000
512281 donor7_skin.TTTCCTCCACTCTAGA-1 donor7_skin 3.84445618 0.9458799 ENSG00000154864.PIEZO2 1.4716415
512282 donor7_skin.TTTCCTCGTACAAAGT-1 donor7_skin -1.86466755 0.1249833 ENSG00000154864.PIEZO2 0.0000000
512283 donor7_skin.TTTCCTCGTAGCGCTC-1 donor7_skin 0.96789597 -1.2941531 ENSG00000154864.PIEZO2 1.0866399
512284 donor7_skin.TTTCCTCGTGGCCCAT-1 donor7_skin -1.77742146 1.0157657 ENSG00000154864.PIEZO2 0.0000000
512285 donor7_skin.TTTCGATAGTGTCATC-1 donor7_skin 1.08103965 -0.5591272 ENSG00000154864.PIEZO2 0.0000000
512286 donor7_skin.TTTCGATCAAGAAATC-1 donor7_skin -2.02880452 -4.1955617 ENSG00000154864.PIEZO2 0.0000000
512287 donor7_skin.TTTCGATTCTGCCCTA-1 donor7_skin -2.95822276 -1.6004554 ENSG00000154864.PIEZO2 0.0000000
512288 donor7_skin.TTTGACTCACCCTTAC-1 donor7_skin -1.19297369 0.3856518 ENSG00000154864.PIEZO2 0.0000000
512289 donor7_skin.TTTGACTCAGTAACGG-1 donor7_skin -2.75150790 -0.7835479 ENSG00000154864.PIEZO2 0.0000000
512290 donor7_skin.TTTGACTGTTCTGACA-1 donor7_skin -1.31828757 -0.2367129 ENSG00000154864.PIEZO2 0.0000000
512291 donor7_skin.TTTGATCCACATATGC-1 donor7_skin 0.71390794 2.2297013 ENSG00000154864.PIEZO2 0.0000000
512292 donor7_skin.TTTGATCCACTAGAGG-1 donor7_skin -1.83226659 0.5647108 ENSG00000154864.PIEZO2 0.0000000
512293 donor7_skin.TTTGATCGTCCCAAAT-1 donor7_skin 0.01913915 2.3483524 ENSG00000154864.PIEZO2 2.3022276
512294 donor7_skin.TTTGATCGTTCTCCAC-1 donor7_skin 0.83273528 2.6859512 ENSG00000154864.PIEZO2 0.0000000
512295 donor7_skin.TTTGATCTCTGTCTCG-1 donor7_skin -1.36970748 -0.4502688 ENSG00000154864.PIEZO2 0.0000000
512296 donor7_skin.TTTGGAGAGCAAACAT-1 donor7_skin 2.42198656 0.8811707 ENSG00000154864.PIEZO2 1.7446003
512297 donor7_skin.TTTGGAGAGTACTCGT-1 donor7_skin -0.99745222 2.7946794 ENSG00000154864.PIEZO2 0.0000000
512298 donor7_skin.TTTGGAGGTACGTGTT-1 donor7_skin -0.40469517 3.2030871 ENSG00000154864.PIEZO2 0.0000000
512299 donor7_skin.TTTGGAGTCCATTTGT-1 donor7_skin -2.61639698 -1.3488972 ENSG00000154864.PIEZO2 0.0000000
512300 donor7_skin.TTTGGAGTCTTACCGC-1 donor7_skin 0.74898480 2.0100686 ENSG00000154864.PIEZO2 1.3394578
512301 donor7_skin.TTTGGTTGTTGTAGCT-1 donor7_skin 0.60430000 2.4989591 ENSG00000154864.PIEZO2 0.0000000
512302 donor7_skin.TTTGTTGCAACTGTGT-1 donor7_skin -0.57576229 -1.1000320 ENSG00000154864.PIEZO2 2.3025932
pdf("figures/umaps-all-markers-each-sample.pdf", width=10, height=8)
for(i in seq_len(length(ms))) {

    print(
        ggplot(ms[[i]], aes(x=UMAP.1, y=UMAP.2, colour = value)) +
        geom_point() +
        scale_colour_gradient(low = "grey80", high = "blue") +
        facet_wrap(~variable) +
        theme(legend.position="top") +
        ggtitle(names(ms)[i])
        )

}
dev.off()
pdf: 2
d <- bind_rows(per_block_umaps)
d_rnormd <- d[,-c(1:4)] + rnorm(prod(dim(d)), mean = 0, sd = .001)
ds <- split(d_rnormd, d$Sample)
pdf("figures/heatmaps-all-markers-each-sample.pdf", width=10, height=5)
for(i in seq_len(length(ds))) {
    pheatmap(t(ds[[i]]), show_colnames = FALSE,
    clustering_distance_cols = "correlation",
    clustering_distance_rows = "correlation",
    main = names(ds)[i]
    )

}
dev.off()
pdf: 3
ds_norm <- ds
pdf("figures/heatmaps-all-markers-each-sample-normalized.pdf", width=10, height=5)
for(i in seq_len(length(ds))) {
  
  qs <- apply(ds[[i]], 2, quantile, p=.90)
  qs[qs < 1] <- 1
  
  for(j in 1:ncol(ds[[i]]))
    ds_norm[[i]][,j] <- ds_norm[[i]][,j]/qs[j]

  ds_norm[[i]][ds_norm[[i]]>1] <- 1

  
  pheatmap(t(ds_norm[[i]]), show_colnames = FALSE,
           clustering_distance_cols = "correlation",
           clustering_distance_rows = "correlation",
           main = names(ds)[i]
           )

}
dev.off()
pdf: 3
# contaminants
options(repr.plot.width=20, repr.plot.height=20)

ggplot(d, aes(
    x = ENSG00000137077.CCL21,
    y = ENSG00000108821.COL1A1)
) + 
geom_jitter(width=.1, height = .5) +
facet_wrap(~Sample)

options(repr.plot.width=12, repr.plot.height=6)
boxplot(as.data.frame(d[,-(1:4)]), las=2)

exp <- d[,-(1:4)] %>% as.matrix
p90 <- exp %>% apply(2, quantile, probs=.9)
p90
ENSG00000117707.PROX1
2.7040474964207
ENSG00000162493.PDPN
1.69283581132588
ENSG00000133800.LYVE1
3.26185058645611
ENSG00000137077.CCL21
7.22691459652125
ENSG00000189056.RELN
2.24996327230414
ENSG00000129048.ACKR4
0
ENSG00000108691.CCL2
3.71939503454669
ENSG00000081041.CXCL2
2.89062607918324
ENSG00000013297.CLDN11
0
ENSG00000272398.CD24
0
ENSG00000149564.ESAM
0.355130098838991
ENSG00000170017.ALCAM
0
ENSG00000108821.COL1A1
0
ENSG00000113721.PDGFRB
0
ENSG00000107796.ACTA2
0
ENSG00000186081.KRT5
0
ENSG00000186847.KRT14
0
ENSG00000081237.PTPRC
0
ENSG00000102755.FLT1
0
ENSG00000154721.JAM2
0
ENSG00000090339.ICAM1
1.88047655359566
ENSG00000103335.PIEZO1
1.28664026201016
ENSG00000154864.PIEZO2
1.73042322902796
col1a1 <- exp[,"ENSG00000108821.COL1A1"] / 2
col1a1[col1a1 > 1] <- 1

jam2 <- exp[,"ENSG00000154721.JAM2"] / 2
jam2[jam2 > 1] <- 1

prgfrb <- exp[,"ENSG00000113721.PDGFRB"] / 2
prgfrb[prgfrb > 1] <- 1

      
pdpn <- exp[,"ENSG00000162493.PDPN"] / p90["ENSG00000162493.PDPN"]
pdpn[pdpn > 1] <- 1

cxcl2 <- exp[,"ENSG00000081041.CXCL2"] / p90["ENSG00000081041.CXCL2"]
cxcl2[cxcl2 > 1] <- 1
             
ccl2 <- exp[,"ENSG00000108691.CCL2"] / p90["ENSG00000108691.CCL2"]
ccl2[ccl2 > 1] <- 1

ccl21 <- exp[,"ENSG00000137077.CCL21"] / p90["ENSG00000137077.CCL21"]
ccl21[ccl21 > 1] <- 1

lyve1 <- exp[,"ENSG00000133800.LYVE1"] / p90["ENSG00000133800.LYVE1"]
lyve1[lyve1 > 1] <- 1

prox1 <- exp[,"ENSG00000117707.PROX1"] / p90["ENSG00000117707.PROX1"]
prox1[prox1 > 1] <- 1

df <- data.frame(
    Sample=d$Sample, 
    col1a1, jam2, prgfrb, ccl21, lyve1,
    prox1, pdpn, ccl2, cxcl2
)

# noise? before filtering?
df[,-1] <- df[,-1] + rnorm(
    nrow(df)*(ncol(df)-1),
    mean=0, sd=.02
)

df
A data.frame: 22274 × 10
Sample col1a1 jam2 prgfrb ccl21 lyve1 prox1 pdpn ccl2 cxcl2
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
donor1_fat.AAAGAACCACATACGT-1 donor1_fat -6.177371e-03 -0.0031744491 0.025607984 0.8637877 0.506185147 0.399910959 -2.141122e-02 -0.0147191045 -0.0092179474
donor1_fat.AAAGGTAGTCCGGTCA-1 donor1_fat -2.562640e-02 0.0135274094 0.016411063 0.6995753 -0.030954370 -0.020318782 1.272878e-02 0.0321146768 -0.0155214929
donor1_fat.AAAGGTATCTCTCTTC-1 donor1_fat 3.954838e-03 -0.0047302147 -0.058921807 1.0064774 0.009121395 0.403507005 9.707439e-01 0.0009019757 -0.0097793427
donor1_fat.AACCACACAGTGGCTC-1 donor1_fat -8.390417e-04 -0.0049775072 0.004997854 0.9798234 0.630962393 -0.022863151 3.719339e-01 0.6664521861 0.0467031244
donor1_fat.AACGGGATCTGCTGAA-1 donor1_fat -3.294729e-02 0.0172184506 0.025801842 1.0099529 0.952636547 0.016039127 3.159890e-02 -0.0161948350 0.0093164554
donor1_fat.AAGAACATCTGTGCAA-1 donor1_fat -9.278279e-03 -0.0432904238 -0.004928558 0.6361269 0.021998822 0.764609556 7.688593e-03 0.4987814014 0.2286961444
donor1_fat.AAGCATCTCGATCCCT-1 donor1_fat 8.961247e-03 0.0257253419 -0.007706475 0.5688781 0.011359943 0.668748819 -9.337751e-04 -0.0031576763 -0.0033508996
donor1_fat.AAGCGAGAGTATCCTG-1 donor1_fat -2.025285e-02 -0.0427843370 0.043382435 0.7318062 0.612130896 0.729646983 4.289729e-03 1.0105701492 0.5701520444
donor1_fat.AAGTTCGAGGCAGGTT-1 donor1_fat -1.957310e-02 -0.0155224185 -0.014063269 0.7817754 0.948710864 0.299500667 7.823209e-01 -0.0224818197 -0.0198374980
donor1_fat.AATCGACCAATTGCAC-1 donor1_fat 5.040912e-03 -0.0047053116 -0.001473258 0.6704721 0.547458265 0.829585304 -8.579479e-05 -0.0042205833 -0.0122900824
donor1_fat.ACAAAGACAATGACCT-1 donor1_fat -2.382496e-02 0.0412669633 -0.004748681 0.7122134 -0.008654046 0.306771378 4.814842e-01 0.3609760289 0.5507497536
donor1_fat.ACAAAGACACTAACGT-1 donor1_fat -2.887057e-02 -0.0007119733 -0.011167208 0.2209485 -0.004722751 -0.006377754 1.007664e-02 -0.0018593270 0.9934970903
donor1_fat.ACAACCAAGGGCTTCC-1 donor1_fat 7.492564e-03 0.0063471223 0.009616054 0.7539768 0.873148301 0.580555478 5.203047e-01 0.3668938136 -0.0005466140
donor1_fat.ACAGGGATCTCATAGG-1 donor1_fat 2.690249e-02 -0.0020851500 0.010444795 0.7800630 0.400894972 0.965109975 -1.875359e-02 0.6930383825 -0.0011001914
donor1_fat.ACATTTCCACTCCACT-1 donor1_fat -2.288523e-02 0.0277930016 -0.001592410 1.0105555 0.331541713 -0.017978599 2.130233e-02 0.9701081869 0.6099380962
donor1_fat.ACATTTCTCGATGGAG-1 donor1_fat 1.469623e-02 0.0315918627 -0.030168437 0.7318597 0.807769612 0.013928482 2.950614e-02 0.8370519554 0.0040403227
donor1_fat.ACCCTTGTCACCATAG-1 donor1_fat -2.389362e-02 -0.0308304543 0.003702698 0.9223370 0.451392924 0.348397754 1.515303e-02 1.0203946074 0.6950916051
donor1_fat.ACCTACCAGACCTCCG-1 donor1_fat -5.153461e-05 -0.0112837207 -0.016008569 1.0031394 -0.006312337 -0.006464281 3.518851e-03 1.0086026451 -0.0328234172
donor1_fat.ACGGAAGCACACCTAA-1 donor1_fat -4.068141e-02 -0.0195332344 -0.013722141 0.7616221 0.903429875 0.811012906 -2.210629e-02 0.0126439890 -0.0003801494
donor1_fat.ACGTAGTTCCCGAAAT-1 donor1_fat 1.864060e-02 0.0445714489 0.006365741 0.8880584 0.704812734 -0.033339004 1.545340e-03 0.5677575058 -0.0066729671
donor1_fat.ACGTTCCAGATGAATC-1 donor1_fat -2.603773e-02 0.0030491045 0.006140261 0.9205795 0.967926311 0.041954248 1.651663e-02 -0.0126926382 0.0182637707
donor1_fat.ACTCTCGAGCCGTTGC-1 donor1_fat -1.347052e-02 -0.0266749866 -0.005039600 0.8886155 -0.016309032 0.003981775 4.496706e-02 0.0007821924 -0.0156276358
donor1_fat.ACTTCCGTCAGGAACG-1 donor1_fat 3.204020e-02 -0.0264540226 0.001974596 0.5470836 -0.025112726 1.016290121 8.666760e-01 0.0273618310 -0.0189019862
donor1_fat.AGACACTCAGGCGATA-1 donor1_fat -1.730093e-02 0.0059739468 0.015334581 0.5701491 0.476474856 -0.016580222 9.025668e-01 -0.0097566128 0.0045944003
donor1_fat.AGACCATTCAAAGGTA-1 donor1_fat -1.537451e-02 -0.0036618865 0.010825460 0.8017194 0.346596916 0.572483367 4.284791e-01 0.5251782663 0.6016392301
donor1_fat.AGAGAGCCAAGCCCAC-1 donor1_fat -2.320340e-02 -0.0068700812 -0.003882135 0.9658855 0.574961429 -0.007573551 -2.751537e-02 1.0131715862 -0.0037450447
donor1_fat.AGAGCCCAGTCTAGCT-1 donor1_fat 9.452643e-03 0.0290292370 -0.018340308 0.8366796 0.782972925 0.312903236 7.415997e-03 -0.0047334983 -0.0152212498
donor1_fat.AGATCCAGTGCAGTGA-1 donor1_fat -1.201114e-02 0.0098563370 0.007610442 0.6463695 0.845765201 0.988111397 -1.628989e-02 -0.0451875636 0.4230879417
donor1_fat.AGATCGTGTTGCGTAT-1 donor1_fat 8.615362e-03 0.0034245307 0.003521553 0.9543483 0.258806687 0.545596044 8.743513e-01 0.8007611046 0.0106937511
donor1_fat.AGGAGGTCAATACGAA-1 donor1_fat 1.324703e-02 -0.0081669716 -0.002687446 1.0038940 0.705750068 0.024315192 2.940806e-03 0.0233627376 0.0038278500
donor7_skin.TTTATGCTCGTGTCAA-1 donor7_skin -0.0003990615 0.0296742640 0.0024537346 -0.0022613577 0.005936938 -0.0152438542 0.011365044 0.0266668524 0.993266362
donor7_skin.TTTCACAAGCGATGGT-1 donor7_skin 0.0724061217 0.0163329879 -0.0121939738 0.8780212054 0.915039457 -0.0022887873 -0.003619139 0.6576163700 -0.022271624
donor7_skin.TTTCACAGTTGTAGCT-1 donor7_skin -0.0193141786 0.0291989017 0.0173694292 0.6724375849 -0.014048362 0.8438412083 -0.014767578 0.3371750161 1.012992834
donor7_skin.TTTCAGTTCAATCGGT-1 donor7_skin -0.0089066053 0.0535302078 0.0057074223 0.9399958719 0.837298673 0.7853596621 0.001170393 0.5677482638 -0.015832060
donor7_skin.TTTCATGGTACAGTCT-1 donor7_skin 0.0168256604 -0.0141936968 0.0342388298 0.8215068327 0.956895869 0.9802217122 -0.014461001 -0.0221556456 0.024801192
donor7_skin.TTTCATGGTGGCTGCT-1 donor7_skin -0.0070698679 0.0068699903 -0.0091017995 0.2931002673 0.810785461 1.0026773554 0.492932180 0.0548301164 -0.010028765
donor7_skin.TTTCATGTCCTTATGT-1 donor7_skin -0.0244871095 0.0021237005 0.0569417374 0.2855903543 0.008329916 0.7890122466 0.667711838 0.8982960297 0.859786864
donor7_skin.TTTCCTCAGCGGACAT-1 donor7_skin 0.0101579819 -0.0072413576 -0.0085471731 0.9655089864 0.537852124 -0.0006230239 0.019402825 0.9072832572 0.883812935
donor7_skin.TTTCCTCCACTCTAGA-1 donor7_skin 0.0078304239 -0.0350495412 -0.0009815983 0.4845271662 0.990405026 0.8220684204 0.019326832 0.0022491603 -0.011941081
donor7_skin.TTTCCTCGTACAAAGT-1 donor7_skin -0.0362198769 -0.0103053609 0.0227414740 0.8186186769 0.576536763 0.9798925477 0.006112943 0.0073708300 -0.020194533
donor7_skin.TTTCCTCGTAGCGCTC-1 donor7_skin -0.0272635933 -0.0507201323 0.0359429627 0.3640793752 0.693701713 0.2074575138 0.383341644 0.5185157652 0.002529597
donor7_skin.TTTCCTCGTGGCCCAT-1 donor7_skin -0.0141176115 0.0140864067 0.0219909984 0.5788112613 0.027949546 0.0088000969 -0.032908415 0.6754636217 1.001629578
donor7_skin.TTTCGATAGTGTCATC-1 donor7_skin 0.0094453692 -0.0021904036 0.0250803613 0.7851348844 0.960259296 0.3687019867 -0.026586277 0.0046595506 0.021779652
donor7_skin.TTTCGATCAAGAAATC-1 donor7_skin -0.0242377823 -0.0403578822 -0.0062238060 -0.0191509953 -0.003257678 0.9991128536 -0.008962441 0.0064038129 -0.021909010
donor7_skin.TTTCGATTCTGCCCTA-1 donor7_skin -0.0032107839 0.0155023708 0.0389190531 -0.0136244979 0.020727457 0.7525883420 0.782999736 0.0112400347 0.463305575
donor7_skin.TTTGACTCACCCTTAC-1 donor7_skin -0.0001306085 -0.0178902702 0.0078969840 0.9241689730 0.547651788 -0.0120514165 1.009696181 0.0331389587 -0.046051959
donor7_skin.TTTGACTCAGTAACGG-1 donor7_skin 0.0050997361 -0.0118696652 0.0130506358 0.5997844688 0.544050749 -0.0387092503 -0.021861516 1.0054835865 0.617677334
donor7_skin.TTTGACTGTTCTGACA-1 donor7_skin -0.0033006433 -0.0167376666 -0.0095107318 0.7667512684 0.013864044 0.5748190268 0.007200415 0.8863525341 -0.012955067
donor7_skin.TTTGATCCACATATGC-1 donor7_skin 0.0086986293 0.0001716679 -0.0063615097 0.7438463843 -0.017501750 0.0030111330 0.043734232 0.4958974983 0.012600984
donor7_skin.TTTGATCCACTAGAGG-1 donor7_skin -0.0032251796 -0.0021914976 0.0128733049 1.0157908962 -0.001787367 -0.0052518524 -0.008076685 -0.0090272773 0.973062128
donor7_skin.TTTGATCGTCCCAAAT-1 donor7_skin -0.0195745681 0.0250537166 -0.0088243499 -0.0039134482 -0.022815206 -0.0144200855 0.005719765 0.0196336264 0.735776560
donor7_skin.TTTGATCGTTCTCCAC-1 donor7_skin -0.0434723500 -0.0252945210 0.0179085736 0.6929848846 0.962433259 0.7529268707 0.020575347 0.0015099153 0.024224592
donor7_skin.TTTGATCTCTGTCTCG-1 donor7_skin 0.0070041822 -0.0115678572 0.0243900636 0.5309536652 0.608532916 -0.0109624939 0.828145276 0.3868799389 0.945091813
donor7_skin.TTTGGAGAGCAAACAT-1 donor7_skin 0.0041887005 0.0139418241 -0.0088589254 0.6603070090 0.998915741 0.8172057627 -0.022135229 -0.0187547122 0.979596396
donor7_skin.TTTGGAGAGTACTCGT-1 donor7_skin 0.0054559858 0.0175492243 0.0156962339 0.7827001774 0.987185754 0.6964182957 0.036893497 -0.0010041689 -0.004765871
donor7_skin.TTTGGAGGTACGTGTT-1 donor7_skin 0.0190830933 0.0145798248 -0.0356252672 1.0102405349 0.542353546 0.0361041893 -0.022489221 -0.0096067625 0.018684895
donor7_skin.TTTGGAGTCCATTTGT-1 donor7_skin -0.0027773493 -0.0189338551 0.0359169146 0.0009260175 -0.000390323 0.4425000838 -0.012844999 0.5196031753 0.438295525
donor7_skin.TTTGGAGTCTTACCGC-1 donor7_skin 0.0331070097 -0.0074154506 0.0028981773 0.4783320616 0.747969470 0.4664506242 0.001862201 -0.0004225433 0.007729157
donor7_skin.TTTGGTTGTTGTAGCT-1 donor7_skin -0.0246628673 -0.0032276620 -0.0063759478 0.8240156451 1.017997709 0.0117801748 0.006195800 0.0052499922 0.016706311
donor7_skin.TTTGTTGCAACTGTGT-1 donor7_skin 0.0128099107 0.0109123962 -0.0250518974 0.8200733693 0.914873636 0.6920174360 -0.027329639 0.3451530485 0.010775754
df$keep <- df %>% with((col1a1+jam2+prgfrb) < .1)
mean(!df$keep)
sum(!df$keep)
with(df, table(Sample, keep))
0.0311574032504265
694
                 keep
Sample            FALSE TRUE
  donor1_fat          2  156
  donor1_skin        19 3784
  donor2_fat         24 2794
  donor3_fat        297  724
  donor3_skin        29  540
  donor4_fat         38   50
  donor4_skin        47  582
  donor5_recovery   122 4757
  donor6_fat         25 1969
  donor6_skin        14 1696
  donor7_fat         26 1681
  donor7_skin        51 2847
options(repr.plot.width=20, repr.plot.height=20)

ggplot(df, aes(x=col1a1+jam2+prgfrb, y=ccl21+lyve1+prox1+pdpn+cxcl2+ccl2, shape=keep)) +
    geom_jitter(width=.01, height = .1) +
    geom_vline(xintercept = .05) +
    facet_wrap(~Sample) + geom_density_2d()
Warning message:
“`stat_contour()`: Zero contours were generated”
Warning message in min(x):
“nessun argomento non-mancante al minimo; si restituisce Inf”
Warning message in max(x):
“nessun argomento non-mancante al massimo; si restituisce -Inf”
Warning message:
“`stat_contour()`: Zero contours were generated”
Warning message in min(x):
“nessun argomento non-mancante al minimo; si restituisce Inf”
Warning message in max(x):
“nessun argomento non-mancante al massimo; si restituisce -Inf”
Warning message:
“`stat_contour()`: Zero contours were generated”
Warning message in min(x):
“nessun argomento non-mancante al minimo; si restituisce Inf”
Warning message in max(x):
“nessun argomento non-mancante al massimo; si restituisce -Inf”
Warning message:
“`stat_contour()`: Zero contours were generated”
Warning message in min(x):
“nessun argomento non-mancante al minimo; si restituisce Inf”
Warning message in max(x):
“nessun argomento non-mancante al massimo; si restituisce -Inf”
Warning message:
“`stat_contour()`: Zero contours were generated”
Warning message in min(x):
“nessun argomento non-mancante al minimo; si restituisce Inf”
Warning message in max(x):
“nessun argomento non-mancante al massimo; si restituisce -Inf”
Warning message:
“`stat_contour()`: Zero contours were generated”
Warning message in min(x):
“nessun argomento non-mancante al minimo; si restituisce Inf”
Warning message in max(x):
“nessun argomento non-mancante al massimo; si restituisce -Inf”
Warning message:
“`stat_contour()`: Zero contours were generated”
Warning message in min(x):
“nessun argomento non-mancante al minimo; si restituisce Inf”
Warning message in max(x):
“nessun argomento non-mancante al massimo; si restituisce -Inf”
Warning message:
“`stat_contour()`: Zero contours were generated”
Warning message in min(x):
“nessun argomento non-mancante al minimo; si restituisce Inf”
Warning message in max(x):
“nessun argomento non-mancante al massimo; si restituisce -Inf”
Warning message:
“`stat_contour()`: Zero contours were generated”
Warning message in min(x):
“nessun argomento non-mancante al minimo; si restituisce Inf”
Warning message in max(x):
“nessun argomento non-mancante al massimo; si restituisce -Inf”
Warning message:
“`stat_contour()`: Zero contours were generated”
Warning message in min(x):
“nessun argomento non-mancante al minimo; si restituisce Inf”
Warning message in max(x):
“nessun argomento non-mancante al massimo; si restituisce -Inf”
Warning message:
“`stat_contour()`: Zero contours were generated”
Warning message in min(x):
“nessun argomento non-mancante al minimo; si restituisce Inf”
Warning message in max(x):
“nessun argomento non-mancante al massimo; si restituisce -Inf”

match(rownames(colData(sce)), rownames(df))
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
  7. 7
  8. 8
  9. 9
  10. 10
  11. 11
  12. 12
  13. 13
  14. 14
  15. 15
  16. 16
  17. 17
  18. 18
  19. 19
  20. 20
  21. 21
  22. 22
  23. 23
  24. 24
  25. 25
  26. 26
  27. 27
  28. 28
  29. 29
  30. 30
  31. 31
  32. 32
  33. 33
  34. 34
  35. 35
  36. 36
  37. 37
  38. 38
  39. 39
  40. 40
  41. 41
  42. 42
  43. 43
  44. 44
  45. 45
  46. 46
  47. 47
  48. 48
  49. 49
  50. 50
  51. 51
  52. 52
  53. 53
  54. 54
  55. 55
  56. 56
  57. 57
  58. 58
  59. 59
  60. 60
  61. 61
  62. 62
  63. 63
  64. 64
  65. 65
  66. 66
  67. 67
  68. 68
  69. 69
  70. 70
  71. 71
  72. 72
  73. 73
  74. 74
  75. 75
  76. 76
  77. 77
  78. 78
  79. 79
  80. 80
  81. 81
  82. 82
  83. 83
  84. 84
  85. 85
  86. 86
  87. 87
  88. 88
  89. 89
  90. 90
  91. 91
  92. 92
  93. 93
  94. 94
  95. 95
  96. 96
  97. 97
  98. 98
  99. 99
  100. 100
  101. 101
  102. 102
  103. 103
  104. 104
  105. 105
  106. 106
  107. 107
  108. 108
  109. 109
  110. 110
  111. 111
  112. 112
  113. 113
  114. 114
  115. 115
  116. 116
  117. 117
  118. 118
  119. 119
  120. 120
  121. 121
  122. 122
  123. 123
  124. 124
  125. 125
  126. 126
  127. 127
  128. 128
  129. 129
  130. 130
  131. 131
  132. 132
  133. 133
  134. 134
  135. 135
  136. 136
  137. 137
  138. 138
  139. 139
  140. 140
  141. 141
  142. 142
  143. 143
  144. 144
  145. 145
  146. 146
  147. 147
  148. 148
  149. 149
  150. 150
  151. 151
  152. 152
  153. 153
  154. 154
  155. 155
  156. 156
  157. 157
  158. 158
  159. 159
  160. 160
  161. 161
  162. 162
  163. 163
  164. 164
  165. 165
  166. 166
  167. 167
  168. 168
  169. 169
  170. 170
  171. 171
  172. 172
  173. 173
  174. 174
  175. 175
  176. 176
  177. 177
  178. 178
  179. 179
  180. 180
  181. 181
  182. 182
  183. 183
  184. 184
  185. 185
  186. 186
  187. 187
  188. 188
  189. 189
  190. 190
  191. 191
  192. 192
  193. 193
  194. 194
  195. 195
  196. 196
  197. 197
  198. 198
  199. 199
  200. 200
  201. 13766
  202. 13767
  203. 13768
  204. 13769
  205. 13770
  206. 13771
  207. 13772
  208. 13773
  209. 13774
  210. 13775
  211. 13776
  212. 13777
  213. 13778
  214. 13779
  215. 13780
  216. 13781
  217. 13782
  218. 13783
  219. 13784
  220. 13785
  221. 13786
  222. 13787
  223. 13788
  224. 13789
  225. 13790
  226. 13791
  227. 13792
  228. 13793
  229. 13794
  230. 13795
  231. 13796
  232. 13797
  233. 13798
  234. 13799
  235. 13800
  236. 13801
  237. 13802
  238. 13803
  239. 13804
  240. 13805
  241. 13806
  242. 13807
  243. 13808
  244. 13809
  245. 13810
  246. 13811
  247. 13812
  248. 13813
  249. 13814
  250. 13815
  251. 13816
  252. 13817
  253. 13818
  254. 13819
  255. 13820
  256. 13821
  257. 13822
  258. 13823
  259. 13824
  260. 13825
  261. 13826
  262. 13827
  263. 13828
  264. 13829
  265. 13830
  266. 13831
  267. 13832
  268. 13833
  269. 13834
  270. 13835
  271. 13836
  272. 13837
  273. 13838
  274. 13839
  275. 13840
  276. 13841
  277. 13842
  278. 13843
  279. 13844
  280. 13845
  281. 13846
  282. 13847
  283. 13848
  284. 13849
  285. 13850
  286. 13851
  287. 13852
  288. 13853
  289. 13854
  290. 13855
  291. 13856
  292. 13857
  293. 13858
  294. 13859
  295. 13860
  296. 13861
  297. 13862
  298. 13863
  299. 13864
  300. 13865
  301. 13866
  302. 13867
  303. 13868
  304. 13869
  305. 13870
  306. 13871
  307. 13872
  308. 13873
  309. 13874
  310. 13875
  311. 13876
  312. 13877
  313. 13878
  314. 13879
  315. 13880
  316. 13881
  317. 13882
  318. 13883
  319. 13884
  320. 13885
  321. 13886
  322. 13887
  323. 13888
  324. 13889
  325. 13890
  326. 13891
  327. 13892
  328. 13893
  329. 13894
  330. 13895
  331. 13896
  332. 13897
  333. 13898
  334. 13899
  335. 13900
  336. 13901
  337. 13902
  338. 13903
  339. 13904
  340. 13905
  341. 13906
  342. 13907
  343. 13908
  344. 13909
  345. 13910
  346. 13911
  347. 13912
  348. 13913
  349. 13914
  350. 13915
  351. 13916
  352. 13917
  353. 13918
  354. 13919
  355. 13920
  356. 13921
  357. 13922
  358. 13923
  359. 13924
  360. 13925
  361. 13926
  362. 13927
  363. 13928
  364. 13929
  365. 13930
  366. 13931
  367. 13932
  368. 13933
  369. 13934
  370. 13935
  371. 13936
  372. 13937
  373. 13938
  374. 13939
  375. 13940
  376. 13941
  377. 13942
  378. 13943
  379. 13944
  380. 13945
  381. 13946
  382. 13947
  383. 13948
  384. 13949
  385. 13950
  386. 13951
  387. 13952
  388. 13953
  389. 13954
  390. 13955
  391. 13956
  392. 13957
  393. 13958
  394. 13959
  395. 13960
  396. 13961
  397. 13962
  398. 13963
  399. 13964
  400. 13965
df <- df[match(rownames(colData(sce)), rownames(df)),]
all(rownames(df) == rownames(colData(sce)))
TRUE
sce$outlier_contamination <- !df$keep
sce %>% colData %>% as.data.frame
A data.frame: 22274 × 21
Sample Barcode donor tissue tissue_origin sequencing_run sex sum detected percent.top_50 percent.top_200 percent.top_500 subsets_Mito_sum subsets_Mito_detected subsets_Mito_percent total outlier_sum outlier_detected sizeFactor outlier_contamination
<chr> <chr> <dbl> <chr> <chr> <dbl> <chr> <dbl> <int> <dbl> <dbl> <dbl> <dbl> <int> <dbl> <dbl> <otlr.flt> <otlr.flt> <dbl> <lgl>
donor1_fat.AAAGAACCACATACGT-1 donor1_fat AAAGAACCACATACGT-1 1 fat abdomen 1 F 4276 1721 33.88681 52.99345 69.31712 752 16 17.5865295 4276 FALSE FALSE 0.8543311 FALSE
donor1_fat.AAAGGTAGTCCGGTCA-1 donor1_fat AAAGGTAGTCCGGTCA-1 1 fat abdomen 1 F 3023 1084 39.66259 65.00165 80.68144 52 12 1.7201456 3023 FALSE FALSE 0.7202661 FALSE
donor1_fat.AAAGGTATCTCTCTTC-1 donor1_fat AAAGGTATCTCTCTTC-1 1 fat abdomen 1 F 3892 1422 34.12127 58.35046 75.92497 48 12 1.2332991 3892 FALSE FALSE 0.9319094 FALSE
donor1_fat.AACCACACAGTGGCTC-1 donor1_fat AACCACACAGTGGCTC-1 1 fat abdomen 1 F 7722 2633 26.89718 48.67910 64.12846 103 13 1.3338513 7722 FALSE FALSE 1.8470909 FALSE
donor1_fat.AACGGGATCTGCTGAA-1 donor1_fat AACGGGATCTGCTGAA-1 1 fat abdomen 1 F 3256 1284 34.33661 59.06020 75.92138 123 11 3.7776413 3256 FALSE FALSE 0.7595401 FALSE
donor1_fat.AAGAACATCTGTGCAA-1 donor1_fat AAGAACATCTGTGCAA-1 1 fat abdomen 1 F 6777 1989 32.86115 60.01180 74.07407 224 14 3.3052973 6777 FALSE FALSE 1.5886582 FALSE
donor1_fat.AAGCATCTCGATCCCT-1 donor1_fat AAGCATCTCGATCCCT-1 1 fat abdomen 1 F 1746 839 34.07789 61.45475 80.58419 63 11 3.6082474 1746 FALSE FALSE 0.4080134 FALSE
donor1_fat.AAGCGAGAGTATCCTG-1 donor1_fat AAGCGAGAGTATCCTG-1 1 fat abdomen 1 F 6750 2393 24.08889 46.69630 63.71852 277 18 4.1037037 6750 FALSE FALSE 1.5692636 FALSE
donor1_fat.AAGTTCGAGGCAGGTT-1 donor1_fat AAGTTCGAGGCAGGTT-1 1 fat abdomen 1 F 5707 2041 31.20729 54.17908 68.91537 188 12 3.2942001 5707 FALSE FALSE 1.3379833 FALSE
donor1_fat.AATCGACCAATTGCAC-1 donor1_fat AATCGACCAATTGCAC-1 1 fat abdomen 1 F 3401 1534 26.60982 49.51485 68.92091 107 15 3.1461335 3401 FALSE FALSE 0.7985717 FALSE
donor1_fat.ACAAAGACAATGACCT-1 donor1_fat ACAAAGACAATGACCT-1 1 fat abdomen 1 F 5851 1802 32.49017 58.43446 74.67100 106 16 1.8116561 5851 FALSE FALSE 1.3927730 FALSE
donor1_fat.ACAAAGACACTAACGT-1 donor1_fat ACAAAGACACTAACGT-1 1 fat abdomen 1 F 3602 1004 43.80900 72.01555 86.00777 60 11 1.6657413 3602 FALSE FALSE 0.8586948 FALSE
donor1_fat.ACAACCAAGGGCTTCC-1 donor1_fat ACAACCAAGGGCTTCC-1 1 fat abdomen 1 F 10238 3273 22.24067 44.50088 59.89451 168 12 1.6409455 10238 FALSE FALSE 2.4412922 FALSE
donor1_fat.ACAGGGATCTCATAGG-1 donor1_fat ACAGGGATCTCATAGG-1 1 fat abdomen 1 F 5210 1884 27.96545 53.03263 69.17466 105 13 2.0153551 5210 FALSE FALSE 1.2376164 FALSE
donor1_fat.ACATTTCCACTCCACT-1 donor1_fat ACATTTCCACTCCACT-1 1 fat abdomen 1 F 3606 1305 36.30061 61.53633 77.67610 33 11 0.9151414 3606 FALSE FALSE 0.8662102 FALSE
donor1_fat.ACATTTCTCGATGGAG-1 donor1_fat ACATTTCTCGATGGAG-1 1 fat abdomen 1 F 3853 1491 34.07734 58.44796 74.27978 68 13 1.7648586 3853 FALSE FALSE 0.9176059 FALSE
donor1_fat.ACCCTTGTCACCATAG-1 donor1_fat ACCCTTGTCACCATAG-1 1 fat abdomen 1 F 4627 1604 34.92544 59.39053 74.82170 84 12 1.8154312 4627 FALSE FALSE 1.1013695 FALSE
donor1_fat.ACCTACCAGACCTCCG-1 donor1_fat ACCTACCAGACCTCCG-1 1 fat abdomen 1 F 1732 651 46.76674 73.78753 91.28176 41 12 2.3672055 1732 FALSE FALSE 0.4099528 FALSE
donor1_fat.ACGGAAGCACACCTAA-1 donor1_fat ACGGAAGCACACCTAA-1 1 fat abdomen 1 F 5069 2279 17.65634 36.41744 56.77648 369 14 7.2795423 5069 FALSE FALSE 1.1394313 FALSE
donor1_fat.ACGTAGTTCCCGAAAT-1 donor1_fat ACGTAGTTCCCGAAAT-1 1 fat abdomen 1 F 3897 1246 36.23300 62.63793 80.70310 39 11 1.0007698 3897 FALSE FALSE 0.9353034 FALSE
donor1_fat.ACGTTCCAGATGAATC-1 donor1_fat ACGTTCCAGATGAATC-1 1 fat abdomen 1 F 1884 1136 28.60934 47.29299 66.24204 280 13 14.8619958 1884 FALSE FALSE 0.3888612 FALSE
donor1_fat.ACTCTCGAGCCGTTGC-1 donor1_fat ACTCTCGAGCCGTTGC-1 1 fat abdomen 1 F 1220 611 41.96721 66.31148 90.90164 154 15 12.6229508 1220 FALSE FALSE 0.2584327 FALSE
donor1_fat.ACTTCCGTCAGGAACG-1 donor1_fat ACTTCCGTCAGGAACG-1 1 fat abdomen 1 F 4898 2364 17.29277 34.29971 53.14414 367 16 7.4928542 4898 FALSE FALSE 1.0984603 FALSE
donor1_fat.AGACACTCAGGCGATA-1 donor1_fat AGACACTCAGGCGATA-1 1 fat abdomen 1 F 4601 1518 33.51445 59.70441 76.26603 171 12 3.7165834 4601 FALSE FALSE 1.0739746 FALSE
donor1_fat.AGACCATTCAAAGGTA-1 donor1_fat AGACCATTCAAAGGTA-1 1 fat abdomen 1 F 7030 2375 27.28307 50.54054 66.28734 27 10 0.3840683 7030 FALSE FALSE 1.6977527 FALSE
donor1_fat.AGAGAGCCAAGCCCAC-1 donor1_fat AGAGAGCCAAGCCCAC-1 1 fat abdomen 1 F 3437 1047 43.26447 69.53739 84.08496 85 12 2.4730870 3437 FALSE FALSE 0.8126327 FALSE
donor1_fat.AGAGCCCAGTCTAGCT-1 donor1_fat AGAGCCCAGTCTAGCT-1 1 fat abdomen 1 F 4781 1680 33.44489 58.12592 73.41560 110 14 2.3007739 4781 FALSE FALSE 1.1324008 FALSE
donor1_fat.AGATCCAGTGCAGTGA-1 donor1_fat AGATCCAGTGCAGTGA-1 1 fat abdomen 1 F 3119 1398 30.49054 53.83136 71.20872 84 12 2.6931709 3119 FALSE FALSE 0.7357817 FALSE
donor1_fat.AGATCGTGTTGCGTAT-1 donor1_fat AGATCGTGTTGCGTAT-1 1 fat abdomen 1 F 4444 1616 32.06571 56.79568 73.33483 7 5 0.1575158 4444 FALSE FALSE 1.0756716 FALSE
donor1_fat.AGGAGGTCAATACGAA-1 donor1_fat AGGAGGTCAATACGAA-1 1 fat abdomen 1 F 3179 1211 36.83548 61.81189 77.63448 108 12 3.3972947 3179 FALSE FALSE 0.7445093 FALSE
donor5_recovery.TTTCGATAGTGGAATT-1 donor5_recovery TTTCGATAGTGGAATT-1 5 mixed abdomen 4 ? 3048 1575 21.42388 42.84777 64.20604 139 16 4.5603675 3048 FALSE FALSE 0.7052353 FALSE
donor5_recovery.TTTCGATGTGCTGATT-1 donor5_recovery TTTCGATGTGCTGATT-1 5 mixed abdomen 4 ? 2238 1400 17.20286 36.90795 59.78552 57 15 2.5469169 2238 FALSE FALSE 0.5287446 FALSE
donor5_recovery.TTTGACTAGATGGGCT-1 donor5_recovery TTTGACTAGATGGGCT-1 5 mixed abdomen 4 ? 2448 1208 27.69608 53.10458 71.07843 95 16 3.8807190 2448 FALSE FALSE 0.5704430 TRUE
donor5_recovery.TTTGACTAGTGTTCAC-1 donor5_recovery TTTGACTAGTGTTCAC-1 5 mixed abdomen 4 ? 6499 2564 24.23450 44.72996 60.70165 78 13 1.2001846 6499 FALSE FALSE 1.5566571 FALSE
donor5_recovery.TTTGACTGTCCAAATC-1 donor5_recovery TTTGACTGTCCAAATC-1 5 mixed abdomen 4 ? 958 673 24.32150 50.62630 81.94154 8 4 0.8350731 958 FALSE FALSE 0.2303106 FALSE
donor5_recovery.TTTGACTGTGATTCTG-1 donor5_recovery TTTGACTGTGATTCTG-1 5 mixed abdomen 4 ? 1568 955 26.97704 50.70153 70.98214 71 14 4.5280612 1568 FALSE FALSE 0.3629210 FALSE
donor5_recovery.TTTGACTGTTGTCTAG-1 donor5_recovery TTTGACTGTTGTCTAG-1 5 mixed abdomen 4 ? 936 593 29.70085 58.01282 90.06410 38 11 4.0598291 936 FALSE FALSE 0.2177041 FALSE
donor5_recovery.TTTGATCAGATGACCG-1 donor5_recovery TTTGATCAGATGACCG-1 5 mixed abdomen 4 ? 956 596 30.75314 58.57741 89.95816 25 8 2.6150628 956 FALSE FALSE 0.2257044 FALSE
donor5_recovery.TTTGATCAGCAATAAC-1 donor5_recovery TTTGATCAGCAATAAC-1 5 mixed abdomen 4 ? 2148 939 34.35754 61.17318 79.56238 71 14 3.3054004 2148 FALSE FALSE 0.5035317 FALSE
donor5_recovery.TTTGATCAGTTACTCG-1 donor5_recovery TTTGATCAGTTACTCG-1 5 mixed abdomen 4 ? 3145 1486 21.90779 46.45469 67.59936 66 15 2.0985692 3145 FALSE FALSE 0.7464487 FALSE
donor5_recovery.TTTGATCGTTGGGCCT-1 donor5_recovery TTTGATCGTTGGGCCT-1 5 mixed abdomen 4 ? 2897 1316 30.54884 54.57370 71.83293 182 17 6.2823611 2897 FALSE FALSE 0.6582034 FALSE
donor5_recovery.TTTGATCTCAAAGGTA-1 donor5_recovery TTTGATCTCAAAGGTA-1 5 mixed abdomen 4 ? 2155 1136 26.07889 50.06961 70.48724 98 14 4.5475638 2155 FALSE FALSE 0.4986830 FALSE
donor5_recovery.TTTGGAGAGTGCAAAT-1 donor5_recovery TTTGGAGAGTGCAAAT-1 5 mixed abdomen 4 ? 1054 601 34.91461 61.95446 90.41746 43 14 4.0796964 1054 FALSE FALSE 0.2450989 FALSE
donor5_recovery.TTTGGAGCATAGGTAA-1 donor5_recovery TTTGGAGCATAGGTAA-1 5 mixed abdomen 4 ? 1846 1050 23.34778 47.50813 70.20585 89 14 4.8212351 1846 FALSE FALSE 0.4259534 FALSE
donor5_recovery.TTTGGAGGTCAGTTTG-1 donor5_recovery TTTGGAGGTCAGTTTG-1 5 mixed abdomen 4 ? 1222 769 26.67758 53.43699 77.98691 51 13 4.1734861 1222 FALSE FALSE 0.2838881 FALSE
donor5_recovery.TTTGGAGGTCCAAGAG-1 donor5_recovery TTTGGAGGTCCAAGAG-1 5 mixed abdomen 4 ? 1829 1058 27.28267 49.64461 69.49153 28 12 1.5308912 1829 FALSE FALSE 0.4366204 FALSE
donor5_recovery.TTTGGAGGTCGACTTA-1 donor5_recovery TTTGGAGGTCGACTTA-1 5 mixed abdomen 4 ? 2389 1430 17.91545 38.21683 61.07158 154 21 6.4462118 2389 FALSE FALSE 0.5418360 FALSE
donor5_recovery.TTTGGAGGTTGAGAGC-1 donor5_recovery TTTGGAGGTTGAGAGC-1 5 mixed abdomen 4 ? 1618 993 21.69345 46.66255 69.53028 38 11 2.3485785 1618 FALSE FALSE 0.3830429 FALSE
donor5_recovery.TTTGGAGTCCAAGAGG-1 donor5_recovery TTTGGAGTCCAAGAGG-1 5 mixed abdomen 4 ? 1262 830 23.85103 50.07924 73.85103 69 14 5.4675119 1262 FALSE FALSE 0.2892216 FALSE
donor5_recovery.TTTGGAGTCTCAACCC-1 donor5_recovery TTTGGAGTCTCAACCC-1 5 mixed abdomen 4 ? 1135 717 29.51542 54.44934 80.88106 18 10 1.5859031 1135 FALSE FALSE 0.2707968 FALSE
donor5_recovery.TTTGGTTAGCCTCTTC-1 donor5_recovery TTTGGTTAGCCTCTTC-1 5 mixed abdomen 4 ? 763 584 24.90170 49.67235 88.99083 24 8 3.1454784 763 FALSE FALSE 0.1791574 FALSE
donor5_recovery.TTTGGTTCACTCTAGA-1 donor5_recovery TTTGGTTCACTCTAGA-1 5 mixed abdomen 4 ? 812 570 27.58621 54.43350 91.37931 24 8 2.9556650 812 FALSE FALSE 0.1910366 FALSE
donor5_recovery.TTTGGTTGTACGTGAG-1 donor5_recovery TTTGGTTGTACGTGAG-1 5 mixed abdomen 4 ? 755 494 30.99338 61.05960 100.00000 34 9 4.5033113 755 FALSE FALSE 0.1747936 FALSE
donor5_recovery.TTTGGTTGTCCTACAA-1 donor5_recovery TTTGGTTGTCCTACAA-1 5 mixed abdomen 4 ? 835 625 24.07186 49.10180 85.02994 27 6 3.2335329 835 FALSE FALSE 0.1958852 FALSE
donor5_recovery.TTTGGTTGTGACTCTA-1 donor5_recovery TTTGGTTGTGACTCTA-1 5 mixed abdomen 4 ? 938 572 29.63753 60.34115 92.32409 2 2 0.2132196 938 FALSE FALSE 0.2269165 FALSE
donor5_recovery.TTTGGTTTCGACCAAT-1 donor5_recovery TTTGGTTTCGACCAAT-1 5 mixed abdomen 4 ? 1328 670 34.33735 64.30723 87.19880 67 10 5.0451807 1328 FALSE FALSE 0.3057070 FALSE
donor5_recovery.TTTGTTGGTCCTACGG-1 donor5_recovery TTTGTTGGTCCTACGG-1 5 mixed abdomen 4 ? 795 552 28.30189 55.72327 93.45912 44 12 5.5345912 795 FALSE FALSE 0.1820666 FALSE
donor5_recovery.TTTGTTGGTCGCAGTC-1 donor5_recovery TTTGTTGGTCGCAGTC-1 5 mixed abdomen 4 ? 1872 1250 16.18590 37.01923 59.93590 66 14 3.5256410 1872 FALSE FALSE 0.4378325 FALSE
donor5_recovery.TTTGTTGGTGGCGTAA-1 donor5_recovery TTTGTTGGTGGCGTAA-1 5 mixed abdomen 4 ? 1928 931 33.14315 58.97303 77.64523 51 13 2.6452282 1928 FALSE FALSE 0.4550452 FALSE
donor5_recovery.TTTGTTGTCGGCATTA-1 donor5_recovery TTTGTTGTCGGCATTA-1 5 mixed abdomen 4 ? 2091 1206 21.95122 45.28934 66.23625 53 14 2.5346724 2091 FALSE FALSE 0.4940768 FALSE
d <- d[match(rownames(colData(sce)), rownames(d)),]
d$keep <- df$keep
all(rownames(d) == rownames(df))
TRUE
df1 <- cbind(d, df[,-c(1,11)])
df1
A data.frame: 22274 × 37
rowname Sample UMAP.1 UMAP.2 ENSG00000117707.PROX1 ENSG00000162493.PDPN ENSG00000133800.LYVE1 ENSG00000137077.CCL21 ENSG00000189056.RELN ENSG00000129048.ACKR4 keep col1a1 jam2 prgfrb ccl21 lyve1 prox1 pdpn ccl2 cxcl2
<chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <lgl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
donor1_fat.AAAGAACCACATACGT-1 donor1_fat.AAAGAACCACATACGT-1 donor1_fat -2.0484646 -1.1637262 1.1180317 0.0000000 1.7402855 6.106210 0.0000000 0.000000 TRUE -6.177371e-03 -0.0031744491 0.025607984 0.8637877 0.506185147 0.399910959 -2.141122e-02 -0.0147191045 -0.0092179474
donor1_fat.AAAGGTAGTCCGGTCA-1 donor1_fat.AAAGGTAGTCCGGTCA-1 donor1_fat 2.8242526 -1.0391492 0.0000000 0.0000000 0.0000000 5.158232 0.0000000 0.000000 TRUE -2.562640e-02 0.0135274094 0.016411063 0.6995753 -0.030954370 -0.020318782 1.272878e-02 0.0321146768 -0.0155214929
donor1_fat.AAAGGTATCTCTCTTC-1 donor1_fat.AAAGGTATCTCTCTTC-1 donor1_fat 0.9381566 0.6268698 1.0517659 2.0769685 0.0000000 7.544117 0.0000000 0.000000 TRUE 3.954838e-03 -0.0047302147 -0.058921807 1.0064774 0.009121395 0.403507005 9.707439e-01 0.0009019757 -0.0097793427
donor1_fat.AACCACACAGTGGCTC-1 donor1_fat.AACCACACAGTGGCTC-1 donor1_fat -0.6080225 -0.6364202 0.0000000 0.6242337 2.0869030 7.002557 0.6242337 0.000000 TRUE -8.390417e-04 -0.0049775072 0.004997854 0.9798234 0.630962393 -0.022863151 3.719339e-01 0.6664521861 0.0467031244
donor1_fat.AACGGGATCTGCTGAA-1 donor1_fat.AACGGGATCTGCTGAA-1 donor1_fat -1.0524757 -1.6120028 0.0000000 0.0000000 3.1537271 7.438566 1.2120004 0.000000 TRUE -3.294729e-02 0.0172184506 0.025801842 1.0099529 0.952636547 0.016039127 3.159890e-02 -0.0161948350 0.0093164554
donor1_fat.AAGAACATCTGTGCAA-1 donor1_fat.AAGAACATCTGTGCAA-1 donor1_fat 1.5718066 0.7489513 2.0521759 0.0000000 0.0000000 4.639207 0.0000000 0.000000 TRUE -9.278279e-03 -0.0432904238 -0.004928558 0.6361269 0.021998822 0.764609556 7.688593e-03 0.4987814014 0.2286961444
donor1_fat.AAGCATCTCGATCCCT-1 donor1_fat.AAGCATCTCGATCCCT-1 donor1_fat 1.7909548 0.8797356 1.7869727 0.0000000 0.0000000 4.182398 0.0000000 0.000000 TRUE 8.961247e-03 0.0257253419 -0.007706475 0.5688781 0.011359943 0.668748819 -9.337751e-04 -0.0031576763 -0.0033508996
donor1_fat.AAGCGAGAGTATCCTG-1 donor1_fat.AAGCGAGAGTATCCTG-1 donor1_fat -1.0558064 1.0522912 2.0656439 0.0000000 2.0656439 5.340170 1.1855387 0.000000 TRUE -2.025285e-02 -0.0427843370 0.043382435 0.7318062 0.612130896 0.729646983 4.289729e-03 1.0105701492 0.5701520444
donor1_fat.AAGTTCGAGGCAGGTT-1 donor1_fat.AAGTTCGAGGCAGGTT-1 donor1_fat -1.0539844 -0.7540492 0.8052045 1.3189166 3.0830320 5.494934 0.0000000 0.000000 TRUE -1.957310e-02 -0.0155224185 -0.014063269 0.7817754 0.948710864 0.299500667 7.823209e-01 -0.0224818197 -0.0198374980
donor1_fat.AATCGACCAATTGCAC-1 donor1_fat.AATCGACCAATTGCAC-1 donor1_fat -1.3530891 -1.1469282 2.2499633 0.0000000 1.8091969 4.835378 0.0000000 0.000000 TRUE 5.040912e-03 -0.0047053116 -0.001473258 0.6704721 0.547458265 0.829585304 -8.579479e-05 -0.0042205833 -0.0122900824
donor1_fat.ACAAAGACAATGACCT-1 donor1_fat.ACAAAGACAATGACCT-1 donor1_fat 1.8577221 0.7200912 0.7807234 0.7807234 0.0000000 5.148268 0.0000000 0.000000 TRUE -2.382496e-02 0.0412669633 -0.004748681 0.7122134 -0.008654046 0.306771378 4.814842e-01 0.3609760289 0.5507497536
donor1_fat.ACAAAGACACTAACGT-1 donor1_fat.ACAAAGACACTAACGT-1 donor1_fat 1.6504609 -0.9285525 0.0000000 0.0000000 0.0000000 1.735139 0.0000000 0.000000 TRUE -2.887057e-02 -0.0007119733 -0.011167208 0.2209485 -0.004722751 -0.006377754 1.007664e-02 -0.0018593270 0.9934970903
donor1_fat.ACAACCAAGGGCTTCC-1 donor1_fat.ACAACCAAGGGCTTCC-1 donor1_fat -0.6354316 1.3237580 1.6079082 0.8633345 2.7516068 5.683224 0.8633345 0.000000 TRUE 7.492564e-03 0.0063471223 0.009616054 0.7539768 0.873148301 0.580555478 5.203047e-01 0.3668938136 -0.0005466140
donor1_fat.ACAGGGATCTCATAGG-1 donor1_fat.ACAGGGATCTCATAGG-1 donor1_fat -0.1048098 0.9759096 2.5479505 0.0000000 1.3873679 5.628782 0.0000000 0.000000 TRUE 2.690249e-02 -0.0020851500 0.010444795 0.7800630 0.400894972 0.965109975 -1.875359e-02 0.6930383825 -0.0011001914
donor1_fat.ACATTTCCACTCCACT-1 donor1_fat.ACATTTCCACTCCACT-1 donor1_fat 2.0356176 -0.3929195 0.0000000 0.0000000 1.1073224 7.776050 0.0000000 1.107322 TRUE -2.288523e-02 0.0277930016 -0.001592410 1.0105555 0.331541713 -0.017978599 2.130233e-02 0.9701081869 0.6099380962
donor1_fat.ACATTTCTCGATGGAG-1 donor1_fat.ACATTTCTCGATGGAG-1 donor1_fat 0.4631455 1.2451497 0.0000000 0.0000000 2.6890671 5.406405 0.0000000 0.000000 TRUE 1.469623e-02 0.0315918627 -0.030168437 0.7318597 0.807769612 0.013928482 2.950614e-02 0.8370519554 0.0040403227
donor1_fat.ACCCTTGTCACCATAG-1 donor1_fat.ACCCTTGTCACCATAG-1 donor1_fat 0.8288960 -0.8372497 0.9320313 0.0000000 1.4936069 6.744583 1.4936069 0.000000 TRUE -2.389362e-02 -0.0308304543 0.003702698 0.9223370 0.451392924 0.348397754 1.515303e-02 1.0203946074 0.6950916051
donor1_fat.ACCTACCAGACCTCCG-1 donor1_fat.ACCTACCAGACCTCCG-1 donor1_fat 2.0905075 0.3380302 0.0000000 0.0000000 0.0000000 8.245428 0.0000000 0.000000 TRUE -5.153461e-05 -0.0112837207 -0.016008569 1.0031394 -0.006312337 -0.006464281 3.518851e-03 1.0086026451 -0.0328234172
donor1_fat.ACGGAAGCACACCTAA-1 donor1_fat.ACGGAAGCACACCTAA-1 donor1_fat -3.9451654 0.2357324 2.1732948 0.0000000 3.0037904 5.174136 2.8366140 0.000000 TRUE -4.068141e-02 -0.0195332344 -0.013722141 0.7616221 0.903429875 0.811012906 -2.210629e-02 0.0126439890 -0.0003801494
donor1_fat.ACGTAGTTCCCGAAAT-1 donor1_fat.ACGTAGTTCCCGAAAT-1 donor1_fat 2.7871909 0.2391406 0.0000000 0.0000000 2.3996324 6.304685 0.0000000 0.000000 TRUE 1.864060e-02 0.0445714489 0.006365741 0.8880584 0.704812734 -0.033339004 1.545340e-03 0.5677575058 -0.0066729671
donor1_fat.ACGTTCCAGATGAATC-1 donor1_fat.ACGTTCCAGATGAATC-1 donor1_fat -3.5143168 0.4605635 0.0000000 0.0000000 4.2480247 6.801925 1.8365751 0.000000 TRUE -2.603773e-02 0.0030491045 0.006140261 0.9205795 0.967926311 0.041954248 1.651663e-02 -0.0126926382 0.0182637707
donor1_fat.ACTCTCGAGCCGTTGC-1 donor1_fat.ACTCTCGAGCCGTTGC-1 donor1_fat -0.4711578 -0.9177226 0.0000000 0.0000000 0.0000000 6.292590 0.0000000 0.000000 TRUE -1.347052e-02 -0.0266749866 -0.005039600 0.8886155 -0.016309032 0.003981775 4.496706e-02 0.0007821924 -0.0156276358
donor1_fat.ACTTCCGTCAGGAACG-1 donor1_fat.ACTTCCGTCAGGAACG-1 donor1_fat -4.0332029 0.4111551 2.6920234 1.4960688 0.0000000 3.681983 0.9338485 0.000000 TRUE 3.204020e-02 -0.0264540226 0.001974596 0.5470836 -0.025112726 1.016290121 8.666760e-01 0.0273618310 -0.0189019862
donor1_fat.AGACACTCAGGCGATA-1 donor1_fat.AGACACTCAGGCGATA-1 donor1_fat 2.8228720 -1.0549392 0.0000000 1.5171453 1.5171453 4.150574 0.0000000 0.000000 TRUE -1.730093e-02 0.0059739468 0.015334581 0.5701491 0.476474856 -0.016580222 9.025668e-01 -0.0097566128 0.0045944003
donor1_fat.AGACCATTCAAAGGTA-1 donor1_fat.AGACCATTCAAAGGTA-1 donor1_fat -0.2053631 0.8217293 1.4683445 0.6681318 1.1230224 5.770836 0.0000000 0.000000 TRUE -1.537451e-02 -0.0036618865 0.010825460 0.8017194 0.346596916 0.572483367 4.284791e-01 0.5251782663 0.6016392301
donor1_fat.AGAGAGCCAAGCCCAC-1 donor1_fat.AGAGAGCCAAGCCCAC-1 donor1_fat 2.1387318 -0.4795322 0.0000000 0.0000000 1.7912458 7.487297 0.0000000 0.000000 TRUE -2.320340e-02 -0.0068700812 -0.003882135 0.9658855 0.574961429 -0.007573551 -2.751537e-02 1.0131715862 -0.0037450447
donor1_fat.AGAGCCCAGTCTAGCT-1 donor1_fat.AGAGCCCAGTCTAGCT-1 donor1_fat -0.9772060 -1.4272784 0.9130940 0.0000000 2.6550031 5.973050 0.0000000 0.000000 TRUE 9.452643e-03 0.0290292370 -0.018340308 0.8366796 0.782972925 0.312903236 7.415997e-03 -0.0047334983 -0.0152212498
donor1_fat.AGATCCAGTGCAGTGA-1 donor1_fat.AGATCCAGTGCAGTGA-1 donor1_fat -1.1057518 -1.5379166 2.6862529 0.0000000 2.6862529 4.745392 1.2382358 0.000000 TRUE -1.201114e-02 0.0098563370 0.007610442 0.6463695 0.845765201 0.988111397 -1.628989e-02 -0.0451875636 0.4230879417
donor1_fat.AGATCGTGTTGCGTAT-1 donor1_fat.AGATCGTGTTGCGTAT-1 donor1_fat 0.3803560 0.7960730 1.5156637 1.5156637 0.9483405 6.802562 0.0000000 0.000000 TRUE 8.615362e-03 0.0034245307 0.003521553 0.9543483 0.258806687 0.545596044 8.743513e-01 0.8007611046 0.0106937511
donor1_fat.AGGAGGTCAATACGAA-1 donor1_fat.AGGAGGTCAATACGAA-1 donor1_fat -0.5325592 -1.5191154 0.0000000 0.0000000 2.3304149 7.858134 0.0000000 0.000000 TRUE 1.324703e-02 -0.0081669716 -0.002687446 1.0038940 0.705750068 0.024315192 2.940806e-03 0.0233627376 0.0038278500
donor5_recovery.TTTCGATAGTGGAATT-1 donor5_recovery.TTTCGATAGTGGAATT-1 donor5_recovery 0.931899659 0.9874523770 1.273794 1.939578 2.738090 5.295910 1.273794 0 TRUE 0.0078565286 -0.057756457 -0.014375509 0.72361653 8.451639e-01 0.465701289 1.0021322779 0.024510657 0.001530271
donor5_recovery.TTTCGATGTGCTGATT-1 donor5_recovery.TTTCGATGTGCTGATT-1 donor5_recovery 3.102502457 0.6960900914 3.386309 0.000000 2.257778 4.780195 1.531704 0 TRUE -0.0088987663 0.005490213 -0.043369000 0.67533106 7.024431e-01 1.043129369 -0.0101730319 -0.014094991 0.018495620
donor5_recovery.TTTGACTAGATGGGCT-1 donor5_recovery.TTTGACTAGATGGGCT-1 donor5_recovery -2.869293698 -1.1133072484 0.000000 0.000000 0.000000 5.878965 1.461017 0 FALSE -0.0080437276 0.746968267 -0.018369823 0.79137227 2.986268e-02 0.017854879 0.0294468781 1.002458934 0.955267980
donor5_recovery.TTTGACTAGTGTTCAC-1 donor5_recovery.TTTGACTAGTGTTCAC-1 donor5_recovery 1.664190642 -1.3018784631 2.074509 0.000000 2.618055 5.711280 1.192071 0 TRUE -0.0035028445 -0.009318380 0.003125337 0.79445088 8.138261e-01 0.765391191 0.0433107484 0.004387637 0.021394056
donor5_recovery.TTTGACTGTCCAAATC-1 donor5_recovery.TTTGACTGTCCAAATC-1 donor5_recovery -0.966822632 -0.6384149898 3.275592 0.000000 0.000000 5.730737 3.275592 0 TRUE 0.0354439677 0.023959903 -0.042248876 0.79037410 1.087581e-03 0.993731390 0.0034982672 0.665586256 0.829429226
donor5_recovery.TTTGACTGTGATTCTG-1 donor5_recovery.TTTGACTGTGATTCTG-1 donor5_recovery -0.445122727 -0.0006952394 1.908975 1.908975 2.702844 5.090220 0.000000 0 TRUE -0.0157393377 -0.008596564 -0.018597758 0.71798386 7.873196e-01 0.712328288 1.0224097005 0.530886129 0.635044719
donor5_recovery.TTTGACTGTTGTCTAG-1 donor5_recovery.TTTGACTGTTGTCTAG-1 donor5_recovery 1.368694297 -0.5846982110 0.000000 2.483723 0.000000 4.835941 2.483723 0 TRUE -0.0048798873 0.041886363 0.010982527 0.69210490 3.078261e-02 -0.003647282 1.0260963791 0.663098789 1.006265200
donor5_recovery.TTTGATCAGATGACCG-1 donor5_recovery.TTTGATCAGATGACCG-1 donor5_recovery -2.969551571 -1.9333430637 0.000000 0.000000 0.000000 4.785731 0.000000 0 TRUE 0.0049796262 -0.017490582 -0.028089584 0.71132958 -8.360597e-05 -0.011483696 -0.0162825909 0.980354720 0.991351882
donor5_recovery.TTTGATCAGCAATAAC-1 donor5_recovery.TTTGATCAGCAATAAC-1 donor5_recovery -1.709560879 0.5504284989 0.000000 0.000000 2.313810 3.897415 2.313810 0 TRUE 0.0020095366 -0.016285486 -0.040712249 0.53686022 7.452480e-01 0.025949401 0.0056907374 0.406526968 0.555830859
donor5_recovery.TTTGATCAGTTACTCG-1 donor5_recovery.TTTGATCAGTTACTCG-1 donor5_recovery 0.267802707 1.6214266907 1.226309 1.226309 1.879452 4.202872 0.000000 0 TRUE -0.0258017198 -0.029121559 -0.003151891 0.57797358 6.069127e-01 0.433515779 0.7166358416 0.035210088 0.996010501
donor5_recovery.TTTGATCGTTGGGCCT-1 donor5_recovery.TTTGATCGTTGGGCCT-1 donor5_recovery -2.176621445 0.4464715611 2.474530 1.333016 2.013846 5.040236 0.000000 0 TRUE 0.0134119960 -0.010139829 -0.005379385 0.68251086 6.489346e-01 0.928533940 0.8013680439 0.004283741 -0.002875205
donor5_recovery.TTTGATCTCAAAGGTA-1 donor5_recovery.TTTGATCTCAAAGGTA-1 donor5_recovery -0.603514918 1.1894396435 2.324973 0.000000 1.587500 5.618437 1.587500 0 TRUE 0.0316904299 0.031706872 -0.005089500 0.76535833 4.907608e-01 0.835413458 0.0452100049 0.458816864 0.529348538
donor5_recovery.TTTGGAGAGTGCAAAT-1 donor5_recovery.TTTGGAGAGTGCAAAT-1 donor5_recovery 1.878585807 -1.7861404825 0.000000 0.000000 0.000000 4.885569 0.000000 0 TRUE -0.0619833289 -0.013402551 -0.008624484 0.66754052 -1.080015e-02 -0.016247571 0.0161020449 0.022663335 0.004043271
donor5_recovery.TTTGGAGCATAGGTAA-1 donor5_recovery.TTTGGAGCATAGGTAA-1 donor5_recovery 1.836256198 2.0150197636 0.000000 2.509784 1.743159 5.899463 0.000000 0 TRUE -0.0301521554 -0.031969654 -0.044194671 0.85170500 5.239608e-01 0.001799755 1.0241798955 0.463552702 0.614902318
donor5_recovery.TTTGGAGGTCAGTTTG-1 donor5_recovery.TTTGGAGGTCAGTTTG-1 donor5_recovery -1.074542531 -0.6555272449 0.000000 2.177125 0.000000 5.750545 2.177125 0 TRUE 0.0012958515 -0.005301574 0.006366746 0.76019623 -1.548313e-02 -0.005096393 0.9813391205 0.598935412 0.031390193
donor5_recovery.TTTGGAGGTCCAAGAG-1 donor5_recovery.TTTGGAGGTCCAAGAG-1 donor5_recovery -0.190672883 0.7834137570 2.480430 0.000000 0.000000 5.617554 0.000000 0 TRUE 0.0246976849 0.006555066 0.022130622 0.75928545 -4.184287e-02 0.927049462 0.0060278824 0.871505983 0.000916595
donor5_recovery.TTTGGAGGTCGACTTA-1 donor5_recovery.TTTGGAGGTCGACTTA-1 donor5_recovery 3.671599380 1.8101390492 1.508721 0.000000 0.000000 5.441227 1.508721 0 TRUE 0.0332257688 -0.004227929 0.034628239 0.74670302 -1.086385e-02 0.603558678 0.0226744277 0.011588924 0.025319511
donor5_recovery.TTTGGAGGTTGAGAGC-1 donor5_recovery.TTTGGAGGTTGAGAGC-1 donor5_recovery 0.003620616 2.9168378007 1.852268 1.852268 0.000000 3.142744 1.852268 0 TRUE -0.0006157999 -0.035827474 0.000994279 0.43876522 -2.388770e-02 0.682955565 0.9690956326 0.008550913 0.005462183
donor5_recovery.TTTGGAGTCCAAGAGG-1 donor5_recovery.TTTGGAGTCCAAGAGG-1 donor5_recovery 2.601738057 -0.4427393783 2.156253 0.000000 0.000000 3.890469 2.984610 0 TRUE 0.0081313922 -0.006917426 -0.004137815 0.53481200 -1.358548e-02 0.793416894 0.0234968804 -0.026179733 -0.006334056
donor5_recovery.TTTGGAGTCTCAACCC-1 donor5_recovery.TTTGGAGTCTCAACCC-1 donor5_recovery -3.085723408 -1.6553999815 0.000000 0.000000 0.000000 5.379235 0.000000 0 TRUE 0.0229661385 -0.002785685 0.014491942 0.69413300 -6.715803e-03 0.013639157 0.0319976176 0.775310750 0.996777514
donor5_recovery.TTTGGTTAGCCTCTTC-1 donor5_recovery.TTTGGTTAGCCTCTTC-1 donor5_recovery 0.379168502 -0.6033170331 0.000000 0.000000 2.718457 6.200887 0.000000 0 TRUE 0.0159770391 -0.030253281 0.018827326 0.85607541 8.387669e-01 0.012585263 0.0195137018 0.011391660 0.014805679
donor5_recovery.TTTGGTTCACTCTAGA-1 donor5_recovery.TTTGGTTCACTCTAGA-1 donor5_recovery -1.271802434 -0.9042818058 0.000000 0.000000 0.000000 5.422125 0.000000 0 TRUE 0.0005551034 0.002609067 0.017852325 0.72905845 -8.366208e-03 -0.041417373 0.0252338117 -0.002223779 0.039848818
donor5_recovery.TTTGGTTGTACGTGAG-1 donor5_recovery.TTTGGTTGTACGTGAG-1 donor5_recovery -1.942956456 -1.6052285690 0.000000 0.000000 2.748683 5.547458 0.000000 0 TRUE -0.0045435839 0.010477268 0.026323274 0.76677997 8.295560e-01 -0.003306779 -0.0108690302 0.029159402 0.003339426
donor5_recovery.TTTGGTTGTCCTACAA-1 donor5_recovery.TTTGGTTGTCCTACAA-1 donor5_recovery 0.055927030 0.0280046355 3.486722 0.000000 0.000000 4.729289 0.000000 0 TRUE -0.0055102803 -0.029907189 0.002991879 0.66621842 2.914754e-02 0.991302344 0.0001031865 0.014177467 -0.012870370
donor5_recovery.TTTGGTTGTGACTCTA-1 donor5_recovery.TTTGGTTGTGACTCTA-1 donor5_recovery -2.104454049 -0.7065999616 0.000000 0.000000 2.434803 5.628656 2.434803 0 TRUE 0.0053178274 -0.006904177 -0.021327896 0.76737950 7.614108e-01 0.010816247 -0.0349556397 -0.013907964 0.992275798
donor5_recovery.TTTGGTTTCGACCAAT-1 donor5_recovery.TTTGGTTTCGACCAAT-1 donor5_recovery -3.072308549 -1.2226327170 0.000000 0.000000 0.000000 6.810155 0.000000 0 TRUE -0.0196506085 -0.020662980 0.020700614 0.96829368 5.692978e-02 0.011930542 -0.0282590883 -0.011952372 0.023237628
donor5_recovery.TTTGTTGGTCCTACGG-1 donor5_recovery.TTTGTTGGTCCTACGG-1 donor5_recovery -0.856789836 -1.2551037479 0.000000 0.000000 0.000000 5.301861 0.000000 0 TRUE -0.0168946830 -0.002951992 -0.006812661 0.76314051 7.248523e-03 0.017844289 -0.0012970226 0.710317045 0.022999301
donor5_recovery.TTTGTTGGTCGCAGTC-1 donor5_recovery.TTTGTTGGTCGCAGTC-1 donor5_recovery 3.593091539 1.3092576157 3.634581 1.715445 1.715445 5.230497 1.715445 0 TRUE -0.0171547874 0.004613047 -0.002779767 0.77820613 5.612141e-01 1.015181387 1.0078475380 -0.011442070 -0.029356296
donor5_recovery.TTTGTTGGTGGCGTAA-1 donor5_recovery.TTTGTTGGTGGCGTAA-1 donor5_recovery 1.460117213 -2.1077972461 2.431668 0.000000 0.000000 0.000000 0.000000 0 TRUE 0.0033150125 -0.018099916 -0.002460468 -0.00730366 5.005984e-03 0.865443464 -0.0463183614 -0.008029120 0.001738280
donor5_recovery.TTTGTTGTCGGCATTA-1 donor5_recovery.TTTGTTGTCGGCATTA-1 donor5_recovery -0.309542426 2.9477435242 1.596447 0.000000 0.000000 1.596447 0.000000 0 TRUE -0.0403284420 -0.019161737 0.005990958 0.20457458 7.002154e-03 0.603981121 0.0025060108 -0.019188513 0.012098517
pdf("figures/contam-removal-spotcheck.pdf", width=10, height=5)

ggplot(df1, aes(x=UMAP.1, y=UMAP.2, colour=ccl21+lyve1+prox1+pdpn+cxcl2+ccl2)) +
    geom_point() +
    scale_colour_gradient(low = "grey80", high = "blue") +
    facet_wrap(~Sample, scales = "free") +
    theme(legend.position="bottom")

ggplot(df1, aes(x=UMAP.1, y=UMAP.2, colour=col1a1+jam2+prgfrb)) +
    geom_point() +
    scale_colour_gradient(low = "grey80", high = "red") +
    facet_wrap(~Sample, scales = "free") +
    theme(legend.position="bottom")

ggplot(df1, aes(x=UMAP.1, y=UMAP.2)) +
    geom_point(colour="grey") +
    geom_point(data = df1 %>% dplyr::filter(!keep), colour="black") +
    facet_wrap(~Sample, scales = "free") +
    theme(legend.position="bottom")

dev.off()
pdf: 2
table(sce$Sample, sce$outlier_contamination)
                 
                  FALSE TRUE
  donor1_fat        156    2
  donor1_skin      3784   19
  donor2_fat       2794   24
  donor3_fat        724  297
  donor3_skin       540   29
  donor4_fat         50   38
  donor4_skin       582   47
  donor5_recovery  4757  122
  donor6_fat       1969   25
  donor6_skin      1696   14
  donor7_fat       1681   26
  donor7_skin      2847   51
sce <- sce[,!sce$outlier_contamination]
sce
class: SingleCellExperiment 
dim: 18627 21580 
metadata(0):
assays(2): counts logcounts
rownames(18627): ENSG00000187634.SAMD11 ENSG00000188976.NOC2L ...
  ENSG00000278817.ENSG00000278817 ENSG00000277196.ENSG00000277196
rowData names(3): ID Symbol Type
colnames(21580): donor1_fat.AAAGAACCACATACGT-1
  donor1_fat.AAAGGTAGTCCGGTCA-1 ... donor5_recovery.TTTGTTGGTGGCGTAA-1
  donor5_recovery.TTTGTTGTCGGCATTA-1
colData names(21): Sample Barcode ... sizeFactor outlier_contamination
reducedDimNames(0):
mainExpName: NULL
altExpNames(0):
table(sce$Sample)

     donor1_fat     donor1_skin      donor2_fat      donor3_fat     donor3_skin 
            156            3784            2794             724             540 
     donor4_fat     donor4_skin donor5_recovery      donor6_fat     donor6_skin 
             50             582            4757            1969            1696 
     donor7_fat     donor7_skin 
           1681            2847 
saveRDS(sce, file="../output/0.2-sce-after-contamination-removal.rds")