sce <- readH5AD(file.path("..", "data", "1.1-sce-after-contamination-removal-integration-clustering.h5ad"), reader ="R")
sce_pre <- readRDS(file.path("..", "data", "0.2-sce-after-contamination-removal.rds"))
#saveRDS(sce, file.path("..", "data", "1.1-sce-after-contamination-removal-integration-clustering.rds"))
#Annotate object
sce$cell_types <- sce$logcounts.scaled.pca.harmony.neighbors_connectivities.leiden_05res
sce <- sce[, !sce$cell_types %in% c("6", "8", "9", "10")]
sce$cell_type_name <- as.factor(sce$cell_types) |> droplevels()
levels(sce$cell_type_name) <- c("4 precollector2", "1 capillary1", "3 precollector1", "6 valve", "2 capillary2", "5 collector", "7 proliferative")
sce$cell_type_name <- factor(sce$cell_type_name, levels = c("1 capillary1", "2 capillary2", "3 precollector1", "4 precollector2", "5 collector", "6 valve", "7 proliferative"))
reducedDims(sce)["umap"] <- reducedDims(sce)["logcounts.scaled.pca.harmony.neighbors.umap"]
# Add relevant metadata to unfiltered sce
sce_pre <- sce_pre[, colnames(sce)]
colData(sce_pre) <- colData(sce)
reducedDims(sce_pre) <- reducedDims(sce)
saveRDS(sce_pre, file.path("..", "data", "sce_all_metadata_genes.rds"))
# Convert to seurat
seurat <- as.Seurat(sce_pre, counts = "counts", data = "logcounts")
seurat$ident <- seurat$cell_type_name
saveRDS(seurat, file.path("..", "data", "seurat_all_metadata_genes.rds"))